Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zabezpieczenie mikrosieci DC za pomocą ΔCB
Języki publikacji
Abstrakty
When implementing a DC distribution network, it is much easier to integrate distributed energy sources than it is with an ac grid. Furthermore, the efficiency and reliability of DC distribution networks outperform those of AC systems. The protection of the DC distribution networks, particularly the interruption and isolation of short-circuit fault currents, is still a major problem. Traditional mechanical and hybrid circuit breakers for DC fault protection have the disadvantage of being sluggish to operate, necessitating the use of high-power equipment. The Solid-State Circuit Breaker is the best choice for quick fault interruption. Since they employ thyristors, Impedance-Source Circuit Breakers are among those that provide automated fault detection and clearing. In this work, a new DC circuit breaker based Δ-impedance source configuration is proposed for medium and low voltage DC distribution networks to provide the bidirectional operation which has also become the general requirement for the modern power system. The proposed topology uses three-coupled windings with one capacitor and four SCR thyristors to facilitate the bidirectional operation. MATLAB/Simulink environment is used to analyze and evaluate the performance of the proposed DC circuit breaker to protect the 240V DC microgrid configuration with different fault conditions and locations. The results obtained prove that the proposed DC circuit breaker has a good performance in protecting the DC distribution networks.
Wdrażając sieć dystrybucyjną prądu stałego, znacznie łatwiej jest zintegrować rozproszone źródła energii niż z siecią prądu przemiennego. Ponadto wydajność i niezawodność sieci dystrybucyjnych prądu stałego przewyższa sieci prądu przemiennego. Ochrona sieci dystrybucyjnych prądu stałego, w szczególności przerywanie i izolowanie prądów zwarciowych, nadal stanowi poważny problem. Tradycyjne mechaniczne i hybrydowe wyłączniki automatyczne do ochrony przed zwarciami prądu stałego mają tę wadę, że działają wolno, co wymaga użycia sprzętu o dużej mocy. Wyłącznik półprzewodnikowy to najlepszy wybór do szybkiego przerywania zwarć. Ponieważ wykorzystują tyrystory, wyłączniki źródła impedancji należą do tych, które zapewniają automatyczne wykrywanie i usuwanie usterek. W tej pracy zaproponowano nową konfigurację źródła Δ-impedancji opartą na wyłączniku prądu stałego dla sieci dystrybucyjnych prądu stałego średniego i niskiego napięcia, aby zapewnić dwukierunkową pracę, która stała się również ogólnym wymogiem dla nowoczesnego systemu elektroenergetycznego. Proponowana topologia wykorzystuje trzy sprzężone uzwojenia z jednym kondensatorem i czterema tyrystorami SCR, aby ułatwić pracę dwukierunkową. Środowisko MATLAB/Simulink jest wykorzystywane do analizy i oceny wydajności proponowanego wyłącznika prądu stałego w celu ochrony konfiguracji mikrosieci 240 V DC z różnymi warunkami i lokalizacjami uszkodzeń. Uzyskane wyniki dowodzą, że proponowany wyłącznik prądu stałego ma dobrą skuteczność w zabezpieczaniu sieci dystrybucyjnych prądu stałego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--150
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- University of Technology Iraq, Baghdad
autor
- University of Technology Iraq, Baghdad
autor
- University of Technology Iraq, Baghdad
Bibliografia
- [1] D. Kumar, F. Zare, and A. Ghosh, "DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects," Ieee Access, vol. 5, pp. 12230- 12256, 2017.
- [2] J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and sustainable energy reviews, vol. 24, pp. 387-405, 2013.
- [3] K. Nandini, N. Jayalakshmi, and V. K. Jadoun, "An overview of DC Microgrid with DC distribution system for DC loads," Materials Today: Proceedings, 2021.
- [4] W. Li, Y. Wang, X. Wu, and X. Zhang, "A novel solid-state circuit breaker for on-board DC microgrid system," IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5715- 5723, 2018.
- [5] S. S. Lumen, R. Kannan, and N. Z. Yahaya, "DC Circuit Breaker: A Comprehensive Review of Solid State Topologies," in 2020 IEEE International Conference on Power and Energy (PECon), 2020: IEEE, pp. 1-6.
- [6] S. Bhatta, R. Fu, and Y. Zhang, "A New Design of Z-Source Capacitors to Ensure SCR's Turn-Off for the Practical Applications of ZCBs in Realistic DC Network Protection," IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10089- 10096, 2021.
- [7] S. Bhatta, "Specification, Control, and Applications of Z-Source Circuit Breakers for the Protection of DC Power Networks," 2021.
- [8] V. Raghavendra, S. N. Banavath, and S. Thamballa, "Modified z-source dc circuit breaker with enhanced performance during commissioning and reclosing," IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 910-919, 2021.
- [9] L. L. Qi, A. Antoniazzi, L. Raciti, and D. Leoni, "Design of solid-state circuit breaker-based protection for DC shipboard power systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 260-268, 2016.
- [10] A. H. Chang, B. R. Sennett, A.-T. Avestruz, S. B. Leeb, and J. L. Kirtley, "Analysis and design of DC system protection using Z-source circuit breaker," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1036-1049, 2015.
- [11] K. A. Corzine and R. W. Ashton, "A new Z-source DC circuit breaker," IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2796-2804, 2011.
- [12] A. H. Chang, A.-T. Avestruz, S. B. Leeb, and J. L. Kirtley, "Design of dc system protection," in 2013 IEEE Electric Ship Technologies Symposium (ESTS), 2013: IEEE, pp. 500-508.
- [13] A. Maqsood and K. Corzine, "Z-source Dc circuit breakers with coupled inductors," in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015: IEEE, pp. 1905-1909.
- [14] S. G. Savaliya and B. G. Fernandes, "Modified bi-directional Z-source breaker with reclosing and rebreaking capabilities," in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018: IEEE, pp. 3497-3504.
- [15] S. G. Savaliya and B. G. Fernandes, "Performance Evaluation of a Modified Bidirectional Z-Source Breaker," IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 7137- 7145, 2020.
- [16] H. Al-khafaf and J. Asumadu, "Γ-Z-source DC circuit breaker operation with variable coupling coefficient k," in 2017 IEEE International Conference on Electro Information Technology (EIT), 2017: IEEE, pp. 492-496.
- [17] X. Diao, F. Liu, Y. Song, M. X. Y. Zhuang, and X. Zha, "Topology Simplification and Parameter Design of Z/T/C-Source Circuit Breakers," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021.
- [18] C. Li, Z. Nie, H. Li, and Y. Zhang, "A novel solid-state protection scheme for DC system," in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016: IEEE, pp. 2039-2042.
- [19] Y. Song, Y. Yu, S. Wang, Q. Liu, and X. Li, "A Novel Efficient Bidirectional T-source Circuit Breaker for Low Voltage DC Distribution Network," in 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2021: IEEE, pp. 1-5.
- [20] X. Diao, F. Liu, Y. Song, M. Xu, Y. Zhuang, and X. Zha, "An Integral Fault Location Algorithm Based on a Modified T-source Circuit Breaker for Flexible DC Distribution Networks," IEEE Transactions on Power Delivery, 2020.
- [21] S. Sapkota, K. Pokharel, Y. Wang, W. Li, and H. Wang, "Modified T-Source Circuit Breaker for Bidirectional Operation in MVDC," in 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020: IEEE, pp. 813-818.
- [22] X. Diao, F. Liu, Y. Song, M. X. Y. Zhuang, W. Zhu, and X. Zha, "A New Efficient Bidirectional T-source Circuit Breaker for Flexible DC Distribution Networks," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020.
- [23] H. Al-Khafaf and J. Asumadu, "Bi-directional Y-Source DC Circuit Breaker Design and Analysis Under Different Conditions of Coupling," in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018: IEEE, pp. 1-6.
- [24] H. Al-khafaf and J. Asumadu, "Efficient Protection Scheme Based on Y-Source Circuit Breaker in Bi-Directional Zones for MVDC Micro-Grids," Inventions, vol. 6, no. 1, p. 18, 2021.
- [25] H. Al-khafaf and J. Asumadu, "Y-source bi-directional dc circuit breaker," in 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), 2018: IEEE, pp. i-v.
- [26] D. SHAH. "DESIGN OF DC MICROGRID." MathWorks. https://www.mathworks.com/matlabcentral/fileexchange/10412 0-design-of-dc-microgrid (accessed March 4, 2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec3857b0-37f7-4a65-8b62-3a6dfc0dfd67