PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the fringing effect on temperature distribution in windings and physical properties of toroidal ferrite inductors with a dual air gap

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the impact of the fringing field at an air gap on the temperature distribution, power loss and other properties of toroidal ferrite inductors with a dual air gap. An air gap constitutes a discontinuity in a magnetic path of an inductor, representing significantly greater reluctance to magnetic flux than that of a ferrite core. The magnetic flux does not cross the air gap in straight lines, but fringes out into the surrounding medium causing electromagnetic interactions with the copper winding enclosing the air gap. This phenomenon is a function of the air gap and the windings geometry as well as the operating frequency. The net effect of the fringing flux is to shorten the gap and to decrease the effective reluctance of the magnetic path. Consequently, coils wound on magnetic cores with a relatively large single air gap, thus with an exacerbated fringing effect, exhibit higher inductance than those with multiple, quasi-distributed or distributed air gaps of the same effective length as the discrete one. The presented research investigates the effects of splitting a discrete air gap on the electromagnetic and thermal properties of toroidal ferrite inductors.
Wydawca
Rocznik
Strony
135--138
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr., wzory
Twórcy
  • Stadium Stontronics, Norwich Research Park, Norwich, United Kingdom
  • Institute of Electronics, Lodz University of Technology, 211/215 Wólczańska St., 90-924 Łódź
Bibliografia
  • [1] Jee-Hoon Jung, Jong-Moon Choi, Joong-Gi Kwon: Design Methodology for Transformers Including Integrated and Center-tapped Structures for LLC Resonant Converters. Journal of Power Electronics, Vol. 9, No. 2, March 2009.
  • [2] Kenneth L. Kaiser: Electromagnetic Compatibility Handbook. CRC Press, 2005, p. 16-56.
  • [3] Ericson R. W., Maksimovic D.: Fundamentals of Power Electronics, Springer Science+Business Media, 2001, p. 506-522.
  • [4] Dowell P. L., “Effects of eddy currents in transformer windings”, IEE Proceeding 1966.
  • [5] Kasikowski R., Więcek B., Farrer M.: Thermographic measurement and thermal modelling of air gap inductors in H-F power forward converters. 13th Quantitative InfraRed Thermography Conference, qirt.2016.053.
  • [6] Kasikowski R., Więcek B., J. Gołaszewski J., Farrer M., Thermal Characterization of High-Frequency Flyback Power Transformer Measurement Automation Monitoring, Jun. 2015, vol. 61, no. 06.
  • [7] Ferroxcube Data Handbook: Soft Ferrites and Accessories, 2009, p.1033.
  • [8] Colonel Wm. McLyman T.: Transformer and Inductor Design Handbook, Fourth Edition, CRC Press, 2011, ISBN 9781439836880.
  • [9] Kazimierczuk M. K.: High-Frequency Magnetic Components, John Wiley &Sons (2014), p. 54.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec374557-78a3-434a-ab90-14bb2ce05cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.