PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Feasibility of Constructed Wetland Using Coagulation Flocculation Technology in Batik Wastewater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The batik industry became a double-edged sword for the development of Indonesia. While it plays a significant role in economy, it also contributes to the environmental pollution, which is mostly caused by the lack of appropriate technology for the wastewater treatment in small industries. This study aims at determining the feasibility in combining the coagulation-flocculation technology using Moringa oleifera seeds powder (MOSP) with horizontal subsurface constructed wetland (HSSFCW) in treating the batik wastewater. The results show that combining 750 mg/L MOSP in the coagulation flocculation technology with 5 days retention time on HSSFCW optimally removed 89.33% of the chemical oxygen demand (COD); 98.11% of total suspended solids (TSS); and 92.05% of fat, oil, and grease (FOG). Moreover, it increases the pH conditions up to 7.33. Despite its high removal efficiency, this technology combination is not feasible in the batik wastewater treatment due to inability to meet the standard effluent of the discharged wastewater. Therefore, adding pre-post treatment to this technology implementation is recommended to obtain the standard effluents of wastewater discharged.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Ketintang, Surabaya, 60231, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Ketintang, Surabaya, 60231, Indonesia
Bibliografia
  • 1. Al-Gheeti, A., Radin, M.R.M.S., Ahmed A., Nurulainee, N.R., Mas Rahayu, J., and Amir H.M. 2017. Efficiency of Moringa oleifera seeds for treatment of laundry wastewater. MATEC Web of Conference, 103.
  • 2. Amagloh, K.F., and Benang, A. 2009. Effectiveness of Moringa oleifera seed as coagulant for water purification. African Journal of Agricultural Research, 119–123.
  • 3. Andreo, P.M., N. García-Martínez and Amela, L. 2016. Domestic wastewater using a depuration horizontal subsurface flow constructed wetland and theoretical optimization: A case study under dry Mediterranean climate. Water, 8, 434, 1–18.
  • 4. Billore, S.K., Prashant and Sharm, J.K. 2009. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. IWA Publishing.
  • 5. Birgani, P.M., Ranjbar, N., Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yppn, Y., and Jang, M. 2016. An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application. Journal of Environmental Management, 184, 229–239.
  • 6. Charoenlarp, K., and Prabphane, P. 2015. Ecofriendly decolorization of textile wastewater using natural coagulants. Researchgate, 45–55.
  • 7. Chusan, T., Makky, E.A., Ali, E.N. and Al Matar, M. 2014. The use of Moringa oliefera seed as a natural coagulant for wastewater treatment and heavy metals removal. Jokull Journal, 64(8), 188–200.
  • 8. Dchmitt Formentini, D.M., Dias Alves, A.C., Veit, M.T., Bergamasco, R., Salcedo Vieira, A.M., and Fagundes-Klen, M.R. 2013. Ultrafiltration combined with coagulation/flocculation/sedimentation using Moringa oliefera as coagulant to treat dairy wastewater industry. Springer Science, Business media, 224, 1682, 1–10.
  • 9. Dehghani, M., and Alizadeh, M.H. 2016. The effects of the natural coagulant Moringa oliefera and alum in wastewater treatment at the banda abbas oil refinery. Environmental Health Engineering and Management Journal, 3(4), 225–230.
  • 10. De Paoli, A.C., and Sperling, M.V. 2013. Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetland: accumulation and hydraulic conductivity reduction. IWA Publishing, 1345–1352.
  • 11. Duran-Dominguez-de-Bazua, M.D.C., WavarroFrometa, A.E., and Bayona, J.M. 2018. Artificial or constructed wetlands: A suitable technology for sustainable water management. CRC press.
  • 12. Efendi, H., Sari, R.D., and Hasibuan, S. 2015. Moringa oleifera as coagulant for batik effluent treatment. International association for impact assessment (IAIA 15) Conference, 1–6.
  • 13. Egbuikwem, P.N., and Sangodoyin, A.Y. 2013. Coagulation efficacy of Moringa oleifera seed exract compared to alum for removal of turbidity and E.coli in three diffferent water sources. European International Journal of Science and Technology, 2(7), 13–19.
  • 14. El Enshasy, H.A., Hanapi, S.Z., Abdel Galil, S.A., Abd Malek, R., and Pareek, A. 2018. Mycoremediation : potential of fungal ligninolytic declourization enzyms, in mycroremediation and environmental sustainability. Fungal Biology, 1, 240 pages.
  • 15. ElZein, Z., Abdou, A., and ElGawad I.A. 2016. Constructed wetlands as a sustainable wastewater treatment method in communities. Procedia Environmental Sciences, 34, 605–617.
  • 16. Freitas, T., Oliveira, V., de Souza, M., Geraldino, H., Almedia, V., Favaro, S., and Garcia, J. 2015. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculents) mucilage as natural coagulant. Industrial Crops and Products, 538–544.
  • 17. Hendrawati, I.R., Yuliastri, Nurhasni, E., Rohaeti, H., Effendi and Darusman, L.K. 2016. The use of Moringa oleifera seed powder as coagulant to improve the quality of wastewater and ground water. Earth and Environmental Science, 1–10.
  • 18. Helfield, J.M., and Diamond, M.L. 1997. Use of constructed wetland for urban stream restoration: A critical analysis. Environmental Management, 21(3), 329–341.
  • 19. Husain, I.A.F., Alkhatib, M.F., Jammi, M.S., Mirghani, M.E.S., Zainudin, Z.B., and Hoda, A. 2014. Problems, control, and treatment of fat, oil, and grease (FOG): A review. Journal of Oleo Science, 63(8), 747–752.
  • 20. Kadlec, R.H., and Wallace, S.D. 2009. Treatment wetlands. Taylor & Francis Group, 2nd Ed., Amerika, CRC Press, 965.
  • 21. Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. and Ridwan, F. 2015. Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana, 4(44), 607–612.
  • 22. Korkusuz, E.A., Beklioglu, M., Demirer, G.N., 2005. Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecological Engineering, 24, 187–200.
  • 23. Kosseva, M.R. 2013. Sources, characterization, and composition of food industry wastes. Food Industry Wastes, pp. 37–60.
  • 24. Li, D., and Liu, S. 2019. Detection of river water quality-chapter 7. Water Quality Monitoring and Management, 21–220.
  • 25. Madrona, G.S., Scapim, M.S.R., Tono, L.A., Reis, M.H.M., Paraiso, C.M. and Bergamasco, R. 2017. Use of Moringa oliefera in combined coagulaltionfiltration process for water treatment. The Italian Association of Chemical Engineering, 57, 1195–1200.
  • 26. Mangangka, I.I., Egodawatta, P., Parker, N.T., Gardner and Goonetilleke, A. 2013. Water Science & Technology, 68(10), 2195–2201.
  • 27. Megonikal, J.P., Hines, M.E., Visscher, P.T. 2004. Anaerobic metabolism: linkage to trace gases and aerobic processes. In : Schlesinger WH, editor. Biogeochemistry. Oxford, U.K. Elsevier-Pergamon, 317–424.
  • 28. Mghaoui, M.E. 2018. Design of a trout for constructed wetland wastewater treatment. Al Akhawayn University, Morroco.
  • 29. Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., and Wicaksono, K.A. 2018. Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 77–83.
  • 30. Mustafa, A. 2013. Constructed wetland for wastewater treatment and reuse: A case Study of developing country. International Journal of Environmental Science and Development, 4, 1, 20–24.
  • 31. Ndabigengesere, A., and Narasiah, K.S. 2010. Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment. Environmental Technology, 19(8), 789–800.
  • 32. Nurhasanah, S., Sudrajat, R.L., Srinovita, Y., and Trisnawati, E. 2016. Optimization of batik fashion based cultural heritage as a competitive advantage in the ASEAN Economic Anticipating Commodity (AEC) in 2015. Proceedings of the 29th International Conference IRES, 29, 18–23.
  • 33. Olanrewaju, O.O., Jegede, O.J., and Adeoye, I.A. 2018. Comparisson of the coagulation efficiency of mo (linnaeus) on wastewater at lower and higher concentration levels. International Journal of Engineering Science and Application, 2(3), 98–105.
  • 34. Qin, R., and Chen, H. 2016. The procession of constructed wetland removal mechanism of pollutant. International Conference on Mechanical Materials and Manufacturing Engineering, 568–570.
  • 35. Qomariyah, S., Sobriyah, Koosdaryani and Muttaqien, A.Y. 2017. Lahan basah buatan sebagai pengolahan limbah cair dan penyedia air non-konsumsi. Jurnal Riset Rekayasa Sipil Universitas Sebelas Maret, 1(1), 25–32.
  • 36. Raman, C.D., and Kanmani, S. 2016. Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341–355.
  • 37. Rashidi, H.R., Nik Sulaiman, N.M., Hashim, N.A., and Che Has, C.R. 2013. Synthetic batik wastewater pretreatment progress by using physical treatment. Advanced Materials Research, 627, 394–398.
  • 38. Rashidi, H.R., Nik Sulaiman, N.M. and Hashim, N.A. 2012. Batik industry synthetic wastewater treatment using nanofiltration membrane. Procedia Engineering, 142–144.
  • 39. Regulation of the Minister of Environment of the Republic of Indonesia Number 5/2014 on Wastewater Quality Standard.
  • 40. Saeed, T., and Sun, G. 2012. A review on nitrogen and organic removal mechanism in subsurface flow constructed wetlands: dependency on environmental parameters, operating, and supporting media. Journal of Environmental Management, 112, 429–448.
  • 41. Sari R.A., Pinem, J.A., and David, S.2016. Utilization of Moringa seed (Moringa oleifera) as a coagulant in brackish water treatment become water use coagulation ultrafiltration process,” Journal FTEKNIK, 3, 1, 1–7.
  • 42. Satterfield, Z. 2005. Jar testing. National Environmental Service Center, 5(1), 1–4.
  • 43. Steelyana, E. 2012. Batik, a beautiful cultural heritage that preserve culture and support economic development in Indonesia. BINUS Business Review, 3(1), 16–130.
  • 44. Sutisna, E., Wibowo, M., Rokhmat, D., Rahman, Y., Khairurrijal, R., and Abdullah, M. 2017. Batik wastewater using TiO2 nanoparticles coated on the surface of plastic sheet. Engineering Physics International Conference, EPIC 2016, 170, 78–83.
  • 45. Sutrisno and Wulandari, D. 2018. Multivariate analysis of variance (Manova) for enriching educational research. Axiom, 9(1), 37–53.
  • 46. Tunggolou, J., and Payus, C. 2017. Moringa oleifera as coagulant used in water purification process for consumption. Earth Science Pakistan, 1(2), 1–3.
  • 47. Travaini-Lima, F., and Sipauba-Travars L.H. 2012. Efficiency of constructed wetlands for wastewater treatment. Acta Limnoloogica Brasiliensia, 24(3), 255–265.
  • 48. Vymazal, J., Brix, H., Copper, P.F., Haberl, R., Perfler, R., and Laber, J. 1998. Removal mechanisms and types of constructed wetlands. 17–66.
  • 49. Vymazal, J., and Kröpfelová, L. 2009. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review. Science of the Total Environmental, 407, 3911–3922.
  • 50. Vymazal, J. 2010. Constructed wetlands for wastewater treatment. Water, 2, 530–549.
  • 51. Vymazal, J. 2013. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of recent development. Water Research, 47, 4795–4811.
  • 52. Vymazal, J. 2014. Constructed wetlands for treatment of industrial wastewater: A review. Ecological Engineering, 73, 724–751.
  • 53. Wallace, D., and Knight, R. L. 2006. Small-scale constructed wetland treatment systems : Feasibility, design, and O & M Requirements. London: IWA Publishing, p. 275.
  • 54. Wardono, H.R.I., Abdullah, S., and Budiono, Z. 2017. Scouring-rush horsetail’s (Equisetum hyemale) capability to reduce detergent, cod and phosphat (PO4) levels of laundry wastewater in Purwokerto in 2016. International Conference on Applied Science and Health. ICASH-A27, 160–167.
  • 55. Weerakoon, G.M.P.R., Jinadasa, K.B.S.N., Herath, G.B.B., Mowjood , M.I.M., and Ng, W.J. 2018. Applicability of constructed wetlands for water quality improvement in a tea estate catchment: The Pwsellawa case study. Water, 10, 332, 2–12.
  • 56. Zahidi, M.S. 2017. Batik as indonesian public diplomacy in ASEAN Economic Community (AEC). International Journal of International Relations, Media and Mass Communication Studies, 3(2), 1–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec361d90-fa26-409d-a270-872ae0ff3749
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.