PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical multivariate analysis of the dosing process results for predictive production and quality management – a case study from the food industry

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this article is to perform a multivariate statistical analysis of package filling process results for predictive production and quality management. The article presents a case study from the food industry that demonstrates the feasibility of using an appropriate set of control charts for ongoing and predictive production and quality management. Design/methodology/approach: The objectives of the article were achieved through the use of Statistical Process Control (SPC) tools, in particular control charts. The control charts used include both traditional numerical chart such as Xbar and S and special charts such as MA, EWMA, CUSUM and GCC. Findings: SPC tools such as control charts have proven to be extremely useful in monitoring the filling process and predicting future performance. By carefully monitoring the process using traditional and special control charts, it is possible to quickly identify small, gradual or sudden changes that may occur in the production process before the process gets out of control. Research limitations/implications: The research will continue by identifying additional factors that affect the quality of the product, particularly as regards precision and accuracy of dosing, and by evaluating the process studied in terms of its ability to meet customer requirements. Other statistical techniques will also be used to identify patterns and relationships between the various parameters of the process under study. This approach will provide more comprehensive information about the quality and ability of the dosing process to meet customer requirements.. Practical implications: By implementing the right SPC toolkit and using dedicated software that significantly speeds up data analysis, companies can effectively control the quality of the production process. By monitoring the behaviour of the process over time and detecting small changes and trends, it is possible to respond to potential problems in advance. Originality/value: This article is intended for production process managers who want to learn how to use the right SPC toolkit to obtain information about the process behaviour and the moments when intervention actions should be taken.
Rocznik
Tom
Strony
277--292
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Czestochowa University of Technology, Department of Production Engineering and Safety
Bibliografia
  • 1. Biały, W., Fries, J. (2019). Computer Systems Supporting the Management of Machines/Equipment in Hard Coal Mines. Case Study. Management Systems in Production Engineering, Vol. 27, No. 3, pp. 138-143, doi: 10.1515/mspe-2019-0022.
  • 2. Boyd, D.F. (1950). Applying the group chart for Xbar and R. Industrial Quality Control, Vol. 7, pp. 22-25.
  • 3. Brennan, J.G, Grandison, A.S. (2011). Food Processing Handbook, 2 Volume Set, 2nd Edition. Hoboken, NJ: Wiley.
  • 4. Czerwińska, K., Piwowarczyk, A. (2022). The use of combined quality management instruments to analyze the causes of non-conformities in the castings of the cover of the rail vehicle bearing housing. Production Engineering Archives, Vol. 28, No. 3, pp. 289-294, doi: 30657/pea.2022.28.36.
  • 5. Deming, W.E., Orsini, J., Deming, D. (2012). The Essential Deming: Leadership Principles from the Father of Quality. New York, NY: McGraw Hill.
  • 6. Diakun, J. (2005). Eksploatacja w praktyce inżynierskiej przemysłu spożywczego. Koszalin: Wyd. Politechniki Koszalińskiej.
  • 7. Dokumentacja techniczno-ruchowa dozownika (1988). Utrecht, Holandia.
  • 8. Febrina, W., Fitriana, W. (2022). Exponential Weight Moving Average (EWMA) Control Chart for Quality Control of Crude Palm Oil Product. International Journal of Management and Business Applied, Vol. 1, No. 1, pp. 19-27, doi: 10.54099/ijmba.v1i1.93.
  • 9. Fellows, P.J. (2009). Food Processing Technology. Principles and Practice. Sawston: Woodhead Publishing.
  • 10. Fred, R.D. (2010). Strategic Management: Concepts and Cases. New York, NY: Pearson College Div.
  • 11. Frost, J. (2020). Introduction to Statistics: An Intuitive Guide for Analyzing Data and Unlocking Discoveries. State College, PA: Statistics By Jim Publishing.
  • 12. Gajdzik, B. (2023). Kaizen in smart manufacturing (SM) projects: framework and examples of improvement areas. Scientific Papers of Silesian University of Technology. Organization and Management Series, No. 169, pp. 281-299, doi: 0.29119/1641-3466.2023.169.16.
  • 13. Herod, M. (2006). Właściwa kontrola masy netto towarów paczkowanych. Jak łatwo zwiększyć zyski. Ważenie, Dozowanie, Pakowanie, Nr 4.
  • 14. Jirasettapong, P., Rojanarowan, N. (2011). A Guideline to Select Control Charts for Multiple Stream Processes Control. Engineering Journal, Vol. 15, No. 3, pp. 1-14, doi: 10.4186/ej.2011.15.3.1.
  • 15. Jobson, J. (1992). Applied multivariate data analysis: categorical and multivariate methods. New York: Springer Science & Business Media.
  • 16. Johnson, R.A., Wichern, D.W. (2007). Applied multivariate statistical analysis. Upper Saddle River, NJ: Pearson Prentice Hall.
  • 17. Kalgonda, A.A., Koshti, V.V., Ashokan, K.V. (2011). Exponentially weighted moving average control chart. Asian Journal of Management Research, Vol. 2, Iss. 1, pp. 253-263.
  • 18. Knop, K. (2018). Statistical Control of the Production Process of Rolled Products. Production Engineering Archives, Vol. 20, pp. 26-31, doi: 10.30657/pea.2018.20.06.
  • 19. Knop, K. (2021a). Managing and Improving the Drilling Process of Woodwork Furniture with the Use of SPC Tools. Manufacturing Technology, Vol. 21, No. 4, pp. 492-501, doi: 10.21062/mft.2021.056.
  • 20. Knop, K. (2021b). Analysing the machines working time utilization for improvement purposes. Production Engineering Archives, Vol. 27, No. 2, pp. 137-147, doi: 10.30657/pea.2021.27.18.
  • 21. Knop, K., Ziora, R. (2022). Statistical Analysis and Prediction of the Product Complaints. In: R. Ulewicz, R. Nikolic, D. Klimecka-Tatar (Eds.), System Safety: Human - Technical Facility - Environment (pp. 99-115). Warszawa: De Gruyter.
  • 22. Koshti, V.V. (2011). Cumulative sum control chart. International Journal of Physics and Mathematical Sciences, Vol. 1, No. 1, pp. 28-32.
  • 23. Koutras, M.V., Bersimis, S., Maravelakis, P.E. (2007). Statistical process control using Shewhart control chart with supplementary runs rules. Methodology and Computing in Applied Probability, Vol. 9, pp. 207-224.
  • 24. Krynke, M., Ivanova, T.N., Revenko, N.F. (2022). Factors, Increasing the Efficiency of Work of Maintenance, Repair and Operation Units of Industrial Enterprises. Management Systems in Production Engineering, Vol. 30, Iss. 1, pp. 91-97, doi: 10.2478/mspe-2022-0012.
  • 25. Kusińska, E. (2009). Dokładność procesu dozowania na przykładzie linii do rozlewu kefiru. Inżynieria Rolnicza, Vol. 5, No. 114, pp. 139-145.
  • 26. Lepore, D., Montgomery, A, Siepe, G. (2016). Quality, Involvement, Flow: The Systemic Organization. New York, NY: Productivity Press.
  • 27. Lim, S.A.H., Antony, J., Albliwi, S. (2014). Statistical Process Control (SPC) in the food industry: a systematic review and future research agenda. Trends in Food Science & Technology, Vol. 37, No. 2, pp. 137-151, doi: 10.1016/j.tifs.2014.03.010.
  • 28. Liu, X., Mackay, R.J., Steiner, S.H. (2008). Monitoring multiple stream processes. Quality Engineering, Vol. 20, pp. 296-308, doi: 10.1080/08982110802035404.
  • 29. Madanhire, I., Mbohwa, Ch. (2016). Application of Statistical Process Control (SPC) in Manufacturing Industry in a Developing Country. Procedia CIRP, Vol. 40, pp. 580-583, doi: 10.1016/j.procir.2016.01.137.
  • 30. Meneces, N.S. Olivera, S.A., Saccone, C.D., Tessore, J. (2008). Statistical control of multiple stream processes: a Shewhart control chart for each stream. Quality Engineering, Vol. 20, pp. 185-194. doi: 10.1080/08982110701241608.
  • 31. Mettler Toledo (2011). Package Quality Control. Available on: https://www.mt.com/pl/pl/home/library/white-papers/industrial-scales/ind-package-quality-control-pdf.html.
  • 32. Montgomery, D.C. (2012). Statistical Quality Control. Hoboken, NJ: Wiley Publishing, Inc.
  • 33. Mortell, R.R., Runger, G.C. (1995). Statistical process control of multiple stream processes. Journal of Quality Technology, Vol. 27, No. 1, pp. 1-12, doi: 10.1080/00224065.1995.11979554.
  • 34. Nelson, L.S. (1984). The Shewhart control chart - Tests for special causes. Journal of Quality Technology, Vol. 16, pp. 237-239.
  • 35. Nolan, T.W., Provost, L.P. (1990). Understanding variation. Quality Progress, Vol. 23, No. 6, pp. 70-78.
  • 36. Oakland, J.S. (2003). Statistical process control. Oxford: Butterworth-Heinemann.
  • 37. Papić-Blagojević, N., Paszek, Z., Lončar, S. (2016). Monitoring the quality of production process using CUSUM control chart. Škola Biznisa, pp. 127-139, doi: 10.5937/skolbiz1-10581.
  • 38. Riaz, M., Abbas, N., Does, R.J. (2011). Improving the performance of CUSUM charts. Quality and Reliability Engineering International, Vol. 27, pp. 415-424.
  • 39. Rosak-Szyrocka, J. (2018). Znaczenie jakości i doskonalenia w przedsiębiorstwie produkcyjnym. Zeszyty Naukowe Politechniki Śląskiej. Seria: Organizacja i Zarządzanie, Nr 1996, Z. 117, pp. 471-483, doi: 10.29119/1641-3466.2018.117.31.
  • 40. Sałaciński, T. (2015). SPC - Statistical Process Control. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 41. Saravacos, G., Kostaropoulos, A.E. (2016). Handbook of Food Processing Equipment. Cham, Switzerland: Springer International Publishing AG, doi: 10.1007/978-3-319-25020-5.
  • 42. Soriano, F.R., Oprime, P.C., Lizarelli, F.L. (2017). Impact analysis of critical success factors on the benefits from statistical process control implementation. Production, 27, e20162040, doi: 10.1590/0103-6513.204016.
  • 43. Spree, F. (2021). Business Process Models in the Context of Predictive Process Monitoring. Revista De Informática Teórica E Aplicada, Vol. 28, No. 1, pp. 39-46. doi: 0.22456/21752745.106828.
  • 44. Sukparungsee, S., Areepong, Y., Taboran, R. (2020). Exponentially weighted moving average - Moving average charts for monitoring the process mean. PLoS ONE, Vol. 15, No. 2, pp. 1-24, doi: 10.1371/journal.pone.0228208.
  • 45. Ulewicz, R., Czerwińska, K., Pacana, A. (2023). A Rank Model of Casting Non-Conformity Detection Methods in the Context of Industry 4.0. Materials, Vol. 16, Iss. 2, doi: 10.3390/ma16020723.
  • 46. Ustawa z dnia 7 maja 2009 r. o towarach paczkowanych. Available on: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20090910740.
  • 47. Webber, L., Wallace, M. (2007). Quality control for dummies. Hoboken, NJ: Wiley Publishing, Inc.
  • 48. Wheeler, D. (2000). Understanding Variation: The Key to Managing Chaos. Knoxville, TN: SPC Press.
  • 49. Wojtaszak, M., Biały, W. (2015). Problem solving techniques as a part of implementation of six sigma methodology in tire production. Case study. Management Systems in Production Engineering, Vol. 3, No. 19, pp. 133-137, doi: 10.12914/MSPE-03-03-2015.
  • 50. Wolniak, R. (2021). The concept of operation and production control. Production Engineering Archives, Vol. 27, No. 2, pp. 100-107, doi: 10.30657/pea.2021.27.12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec3102c5-af31-486d-9a34-d1522d84800c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.