PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental immobilization of Zn, Pb and Cd by additives to highly contaminated soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The immobilization effect of soil amendments on leaching and bioavailability of Pb, Zn and Cd in highly contaminated soils under industrial impact was studied by collecting the soils in the surroundings of Zn-Pb Smelter “Miasteczko Śląskie” in southern Poland as an example. Various amounts of four additives (phosphate fertilizer, limestone powder, bentonite rock and bog iron ore) were tested in laboratory experiments to compare the effectiveness of three dominant mechanisms of immobilization: precipitation of phosphates, pH increase, and sorption. The contents of metals before immobilization were determined by extraction in CaCl2, EDTA and aqua regia. Cadmium and zinc are mainly represented by soluble, bioavailable forms extractable in CaCl2, while lead by potentially bioavailable speciations extractable by EDTA. Most effective in the immobilization of these metals were the amendments increasing soil pH: limestone powder and phosphate fertilizer. Bog iron ore and bentonite were less effective because the soil pH was too low for efficient cation adsorption.
Czasopismo
Rocznik
Strony
67--81
Opis fizyczny
Bibliogr. 94 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Bajda, T., Marchlewski, T., & Manecki, M. (2011). Pyromorphite formation from montmorillonite adsorbed lead. Mineralogia, 42(2-3), 75-91. DOI: 10.2478/v10002-011-0008-5.
  • Baran, S., & Faber, A. (1976). Wpływ zanieczyszczeń emitowanych przez huty cynku na zawartość ołowiu i cynku w glebie i w roślinach. Zeszyty Problemowe Postępów Nauk Rolniczych, 179, 605-612. [In Polish].
  • Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in smelter contaminated soils. Environmental Pollution, 127(1), 73-82. DOI: 10.1016/S0269-7491(03)00250-1.
  • Bielińska, E. J., Mocek-Płóciniak A. (2010). Impact of ecochemical soil conditions on selected heavy metals content in garden allotment vegetables. Polish Journal of Environmental Studies, 19(5). 895-900.
  • Břendová, K., Tlustoš, P., & Száková, J. (2015). Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant, Soil and Environment, 61(7), 303-308. DOI: 10.17221/181/2015-pse.
  • Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., & Vangrosnveld, J. (2005). An inter-laboratory study to test the ability of amendments to reduce bioavailability of Cd, Pb and Zn in situ. Environmental Pollution, 138(1), 34-45. DOI: 10.1016/j.envpol.2005.02.020.
  • Cui, H., Bao, B., Cao, Y., Zhang, S., Shi, J., Zhou, J., Zhou, J. (2022). Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations. Environmental Pollution, 292, A, 118323. DOI: 10.1016/j.envpol.2021.118323.
  • Chen, M., & Ma L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491-499. DOI: 10.2136/sssaj2001.652491x.
  • Debiec, K., Rzepa, G., Bajda, T., Zych, L., Krzysztoforski, J., Sklodowska, A., & Drewniak, L. (2017). The influence of thermal treatment on bioweathering and arsenic sorption capacity of a natural iron (oxyhydr)oxide-based adsorbent. Chemosphere, 188, 99-109. DOI: 10.1016/j.chemosphere.2017.08.142.
  • Diatta, J., Wirth, S., & Chudzińska, E. (2010). Application of the partition coefficient for assessing heavy metals mobility within the Miasteczko Slaskie zinc smelter impact zone (Poland). Ecological Chemistry and Engineering A, 17(1-2), 1203-1212.
  • Du, J., Zhou, A., Lin, X., Bu, Y. (2022). Adsorption mechanism of Pb2+ in montmorillonite nanopore under various temperatures and concentrations. Environmental Research, 209, 112817. DOI: 10.1016/j.envres.2022.112817.
  • Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl–mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75(7), 1858-1868. DOI: 10.1016/j.gca.2011.01.021.
  • Gerold-Śmietańska, I. (2007). Kierunki przemian fitocenoz borowych obserwowanych na stałych powierzchniach badawczych w okolicach huty cynku w Miasteczku Śląskim. Ph.D. thesis, University of Silesia in Katowice, Poland [In Polish].
  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and redmud. Environmental Pollution, 142(3), 530-539. DOI: 10.1016/j.envpol.2005.10.017.
  • Grobelak, A., Kacprzak, M., Grosser, A., & Napora, A. (2013). Chemophytostabilisation of soil contaminated with Cadmium, Lead and Zinc. Annual Set The Environment Protection, 15, 1982-2002. [In Polish with English summary].
  • Grobelak, A., & Napora, A. (2015). The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE, 10(6), e0129538. DOI: 10.1371/journal.pone.0129538.
  • Heiri, O., Lotter, A.F., & Lemcke, G. (2001). Loss of ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101-110. DOI: 10.1023/A:1008119611481.
  • Hettiarachchi, G. M., & Pierzynski, G. M. (2004), Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environmental Progress, 23(1), 78-93. DOI: 10.1002/ep.10004.
  • Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70(11), 2009-2015. DOI: 10.1016/j.chemosphere.2007.09.025.
  • Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & van der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment, 178, 21-28. DOI: 10.1016/0048-9697(95)04793-X.
  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9-10), 1299-1396. DOI: 10.1080/00103620009370514.
  • Houben, D., Pircar, J., Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87-94. DOI: 10.1016/j.gexplo.2011.10.004.
  • Iakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., & Sillanpää, M. (2015). Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40. DOI: 10.1016/j.ecoleng.2015.04.046.
  • Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. CRC Press.
  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace Elements from Soil to Human. Springer.
  • Kaczmarek, K., Świsłowski, P., & Rajfur, M. (2017). The active biomonitoring using mosses as bioindicators near Miasteczko Slaskie. Proceedings of ECOpole, 11(2), 507-516. DOI: 10.2429/proc.2017.11(2)055 [In Polish with English summary].
  • Kaczorek, D., Brümmer, G. W., & Sommer, M. (2009). Content and Binding Forms of Heavy Metals, Aluminium and Phosphorous in Bog Iron Ores from Poland. Journal of Environment Quality, 38(3), 1109-1119. DOI: 10.2134/jeq2008.0125.
  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. DOI: 10.1016/j.gexplo.2016.11.021.
  • Kicińska, A. (2011). Occurrence and mobility of zinc, lead and cadmium in soils polluted by mining and metallurgical industries. Ochrona Środowiska i Zasobów Naturalnych, 42, 152-162 [In Polish with English summary].
  • Kicińska, A. (2019). Environmental risk related to the presence and mobility of As, Cd and Tl in soil in the vicinity of a metallurgical plant – long-term observations. Chemosphere, 236, 124308. DOI: 10.1016/j.chemosphere.2019.07.039.
  • Kicińska, A. (2020). Lead and Zinc in Soils Around a ZincWorks – Presence, Mobility and Environmental Risk. Journal of Ecological Engineering, 21(4), 185-198. DOI: 10.12911/22998993/119815.
  • Kicińska A., Wikar. J. (2021). The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L. Scientific Reports, 11, 4072. DOI: 10.1038/s41598-021-83600-7.
  • Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2021). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), 1-14. DOI: 10.1111/ejss.13203.
  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management, 28(1), 215-225. DOI: 10.1016/j.wasman.2006.12.012.
  • Kumpiene, J., Antelo, J., Bränvall, E., Carabante, I., Ek, K., Komárek, M., Söderberg, C., & Wårell L. (2019). In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review. Applied Geochemistry, 100, 335-351. DOI: 10.1016/j.apgeochem.2018.12.003.
  • Lahori, A. H., Zhang, Z. Guo, Z., Mahar, A., Li, R., Awasthi, M. K., Sial, T. A., Kumbhar, F., Wang, P., Shen, F., Zhao, J., Huang, H. (2017a). Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 313-323. DOI: 10.1016/j.ecoenv.2017.07.049.
  • Lahori, A. H., Guo, Z. Y., Zhang, Z. Q., Li, R. H., Mahar, A., Awasthi, M. K., Shen, F., Sial, T. A., Kumbhar, F., Wang, P., Jiang, S. C. (2017b). Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere, 27(6), 991–1014. DOI: 10.1016/S1002-0160(17)60490-9.
  • Lahori, A.H., Mierzwa-Hersztek, M., Rashid, M., Kalhoro, S. A., Memon, M., Naheed, Z., Ahmed, M., Zhang, Z. (2020). Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils. Journal of Environmental Sciences, 87, 299-309. DOI: 10.1016/j.jes.2019.07.003.
  • Lee, S. H., Lee, J. S., Choi, Y. J. & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069-1075. DOI: 10.1016/j.chemosphere.2009.08.056.
  • Liu, X., Hicher, P., Muresan, B., Saiyouri, N., & Hicher, P-Y. (2016). Heavy metal retention properties of kaolin and bentonite in a wide range of concentration and different pH conditions. Applied Clay Science, 119, 365-374. DOI: 10.1016/j.clay.2015.09.021.
  • Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science & Technology, 27(9), 1803-1810. DOI: 10.1021/es00046a007.
  • Mains, D., Craw, D., Rufaut, C. G. & Smith, C. M. S. (2006). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163-183. DOI: 10.1080/15226510600742559.
  • Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178-181. DOI: 10.1007/s10311-005-0030-1.
  • Manouchehri, N., Besancon S., & Bermond A. (2006). Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559(1), 105-112. DOI: 10.1016/j.aca.2005.11.050.
  • Manouchehri, N., & Bermond, A. (2009). EDTA in soil science: A review of its application in soil trace metal studies. Terrestrial and Aquatic Environmental Toxicology, 3(1), 1-15.
  • Matusik, J., Bajda, T., & Manecki, M., (2008). Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 152(3), 1332-1339, DOI: 10.1016/j.jhazmat.2007.08.010.
  • Matusik, J., Bajda, T., & Manecki, M. (2012). Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology, Geophysics and Environmental Protection, 38(4), 427-438. DOI: 10.7494/geol.2012.38.4.427.
  • McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management, 4449-8.
  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283. DOI: 10.1289/ehp.10608.
  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3), 121-133. DOI: 10.1007/s10311-007-0133-y.
  • Mignardi, S., Corami, A., Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86(4), 354-360. DOI: 10.1016/j.chemosphere.2011.09.050.
  • Mitzia, K., Vítková, M., & Komárek M. (2020). Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: a temporal study of soli phase geochemistry under changing soil conditions. Chemosphere, 242, 125248. DOI: 10.1016/j.chemosphere.2019.125248.
  • Mohammed-Azizi, F., Dib, S., & Boufatit, M. (2013). Removal of heavy metals from aqueous solutions by Algerian bentonite. Desalination and Water Treatment, 51(22-24), 4447-4458. DOI: 10.1080/19443994.2013.770241.
  • Nadgórska-Socha, A., Kandziora-Ciupa, M., Ciepał, R., Musialik, D., & Barczyk, G. (2013). The activity of selected soil enzymes, and soil contamination with zinc, cadmium and lead in the vicinity of the zinc smelter “Miasteczko Slaskie”. Ecological Chemistry and Engineering A, 20(1), 123-131. DOI: 10.2428/ecea.2013.20(01)014.
  • Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0.
  • Nejad, Z. D., Jung, M. C., Kim, K-H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927-953. DOI: 10.1007/s10653-017-9964-z.
  • Nkutha, C.S., Naidoo, E.B., & Shooto, N.D. (2021). Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. South African Journal of Chemical Engineering, 36, 43-57. DOI: 10.1016/j.sajce.2021.01.001.
  • Pająk, M., & Jasik, M. (2010). The level of Zn, Cd and Pb accumulation in top layer of forest soil in the neighbourhood of metallurgic compex „Miasteczko Śląskie”. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 137, 112-122 [In Polish with English summary].
  • Pieczara G., & Rzepa G. (2016). The effect of Si content on ferrihydrite sorption capacity for Pb(II), Cu(II), Cr(VI), and P(V). Environmental Engineering and Management Journal, 15(9), 2095-2107. DOI: 10.30638/eemj.2016.226.
  • Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), 217-226. DOI: 10.1016/j.aca.2003.10.047.
  • Raicevic, S., Kaluđjerović-Radoičić, T., & Zouboulis, A. I. (2005). In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. Journal of Hazardous Materials, 117(1), 41-53. DOI: 10.1016/j.jhazmat.2004.07.024.
  • Rozpondek, R., Rozpondek, K., & Kacprzak, M. (2017). Evaluation of contamination od Zn-Pb industry degraded areas using spatial information. Ecological Engineering, 18(3), 106-113. DOI: 10.12912/23920629/70265 [In Polish with English summary].
  • Rzepa, G., Bajda, T., & Ratajczak, T. (2009). Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials, 162(2-3), 1007-1013. DOI: 10.1016/j.jhazmat.2008.05.135.
  • Rzepa, G., Bajda, T., Gaweł, A., Dębiec, K., & Drewniak, Ł. (2016). Mineral transformations and textural evolution during roasting of bog iron ores. Journal of Thermal Analysis and Calorimetry, 123(1), 615-630. DOI: 10.1007/s10973-015-4925-1.
  • Santoro, A., Held, A., Linsinger, P. J. T., Pérez, A., & Ricci, M. (2017). Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends in Analytical Chemistry, 89, 34-40. DOI: 10.1016/j.trac.2017.01.010.
  • Shi, Q., Zhang, S., Ge, J., Wei, J., Christodoulatos, C., Korfiatis, G. P., Meng, X. (2020). Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation. Water Research, 179, 115853. DOI: 10.1016/j.watres.2020.115853.
  • Sierka, E., Palowski, B., & Kimsa, T. (2001). Zinc in soil around non-ferrous metals smelter. Archiwum Ochrony Środowiska, 27(2), 169-173.
  • Sierka, E., Palowski, B., & Kimsa, T. (2002). Contamination of soil around non-ferrous metals smelter. Lead and cadmium. Chemia i Inżynieria Ekologiczna, 9, 893-896.
  • Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27(4), 289-300. DOI: 10.1007/s10653-004-5977-5.
  • Smieja-Król, B., Smieja, A., & Fiałkiewicz-Kozieł, B. (2017). Seasonal variations in trace metals distribution in degraded peatlands in Miasteczko Śl. (S Poland). Mineralogia – Special Papers, 47, 84.
  • Song, Y., Zhao, Z., Li, J., You, Y., Ma, X., Li, J., & Cheng, X. (2021). Preparation of silicon-doped ferrihydrite for adsorption of lead and cadmium: Property and mechanism. Chinese Chemistry Letters, 32(10), 3169-3174. DOI: 10.1016/j.cclet.2021.03.001.
  • Sun, W., Zhang, S., & Su, C. (2018). Impact of biochar on the bioremediation and phytoremediation of heavy metal(loid)s in soil. In N. Shiomi (Ed.) Advances in Bioremediation and Phytoremediation, IntechOpen. DOI: 10.5772/intechopen.70349.
  • Szrek, D., Bajda, T., & Manecki, M. (2011). A comparative study of the most effective amendment for Pb, Zn and Cd immobilization in contaminated soils. Journal of Environmental Science and Health A, 46(13), 1491-1502. DOI: 10.1080/10934529.2011.609082.
  • Talaat, H. A., El Defrawy, N. M., Abulnour, A. G., Hani, H. A., & Tawfik, A. (2011). Evaluation of Heavy Metals Removal Using Some Egyptian Clays. International Proceedings of Chemical, Biological and Environmental Engineering, 6, 37-42.
  • Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309. DOI: 10.1016/j.envint.2015.12.017.
  • Uchimiya, M., Bannon, D. I., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2012). Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 60(20), 5035-5044. DOI: 10.1021/jf300825n.
  • Usman, A. R. A., Kuzyakov, Y., Lorenz, K., Stahr, K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. Journal of Plant Nutrition and Soil Science, 169(2), 205-212. DOI: 10.1002/jpln.200421685.
  • Vítková, M., Rákosová, S., Michálkova, Z., & Komárek, M. (2016). Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Journal of Environmental Management, 186(2), 268-276. DOI: 10.1016/j.jenvman.2016.06.003.
  • Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2013). Effect of Quick Lime and Dolomite Application on Mobility of Elements (Cd, Zn, Pb, As, Fe, and Mn) in Contaminated Soils. Polish Journal of Environmental Studies, 22(2), 577-589.
  • Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2017). Effect of rock phosphate and superphosphate application on mobility of elements (Cd, Zn, Pb, As, Fe, Mn) in contaminated soils. Environmental Engineering and Management Journal, 16(12), 2901-2910. DOI: 10.30638/eemj.2017.299.
  • Vrînceanu, N. O., Motelică, D. M., Dumitru, M., Calciu, I., Tănase, V., & Preda, M. (2019). Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena, 176, 336-342. DOI: 10.1016/j.catena.2019.01.015.
  • Wang, Y., Li, F., Song, J., Xiao, R., Luo, L., Yang, Z., & Chai, L. (2018). Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud. Environmental Geochemistry and Health, 40(2), 2143-2153. DOI: 10.1007/s10653-018-0089-9.
  • Widera, S. (1980). Contamination of the soil and assimilative organs of the pine-tree in various distance from the surface of emission. Archiwum Ochrony Środowiska, 3-4, 141-146 [In Polish with English summary].
  • Wołowiec, M., Tuchowska, M., Kudła, P., & Bajda, T. (2019). Synthesis and characterization of cadmium chlorapatite Cd5(PO4)3Cl, Mineralogia, 50(1-4), 3-12. DOI: 10.2478/mipo-2019-0001.
  • Xiu, W., Yu, X., Guo, H., Yuan, W., Ke T., Liu, G., Tao, J., Hou, W., & Dong, H., (2019). Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals. Chemosphere, 225, 755-764. DOI: 10.1016/j.chemosphere.2019.02.098.
  • Xu, P., Sun, C-X., Ye, X-Z., Xiao, W-D., Zhang, Q., Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132, 94-100. DOI: 10.1016/j.ecoenv.2016.05.031.
  • Xu D-M., Fu R-B., Wang J-X., Shi Y-X., & Guo X-P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated valuation methods -A critical review. Journal of Cleaner Production, 321, 128730. DOI: 10.1016/j.jclepro.2021.128730.
  • Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W., & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884-891. DOI: 10.1016/j.chemosphere.2017.06.040.
  • Zai, W., Zhang, X., Su, Y., Man, H. C., Li, G., & Lian, J. (2020). Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface and Coatings Technology, 397, 125919. DOI: 10.1016/j.surfcoat.2020.125919.
  • Zhang, P., Ryan, J.A., & Bryndzia, L.T. (1997). Pyromorphite Formation from Goethite Adsorbed Lead. Environmental Science & Technology, 31(9), 2673-2678, DOI: 10.1021/es970087x.
  • Zhang, Y., Zhang, H., Wang, M., Zhang, Z., Marhaba, T., Sun, C. & Zhang, W. (2019). In situ immobilization of heavy metals in contaminated sediments by composite additives of hydroxyapatite and oxides. Environmental Earth Sciences, 78, 94. DOI: 10.1007/s12665-019-8085-7.
  • Zhang, D., Ding, A., Li, T., Wu, X., Liu, Y., Naidu, R. (2021). Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. Journal of Soils and Sediments, 21, 2262-2272. DOI: 10.1007/s11368-021-02928-9.
  • Zhang, Y., Wang, J., Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284. DOI: 10.1016/j.catena.2021.105284.
  • Zhu, X., Li, J., Luo, J., Jin, Y., & Zheng, D. (2016). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers, 70, 200-208. DOI: 10.1016/j.jtice.2016.10.049.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec2cf8f3-724d-4c0f-8803-21491a0627a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.