PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Mechanical Properties of Woven Fabrics by ANN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to obtain an accurate prediction model of mechanical properties of woven fabric to achieve customer satisfaction. Samples of plain woven fabric were produced from different yarn counts and blend ratios of cotton and polyester of weft yarn at different weft densities. Mechanical properties such as tensile strength, bending stiffness and elongation% in both the warp and weft directions were tested. The prediction model was based on Artificial Neural Networks (ANNs). For each model, thirty-nine samples were used for training and fifteen for testing prediction performance. Findings indicated that the ANN achieved a perfect performance in predicting all properties.
Rocznik
Strony
54--59
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Textile Engineering Department, Faculty of Engineering, Alexandria University, Egypt
Bibliografia
  • 1. Grosberg P. Kedia S. The Mechanical Properties of Woven Fabrics: Part I: The Initial Load Extension Modulus of Woven Fabrics. Textile Research Journal.1966; 36(1):71-79.
  • 2. Wemyss A. De Boos A. Effects of Structure and Finishing on the Mechanical and Dimensional Properties of Wool Fabrics. Textile Research Journal. 1991; 61(5): 247-252.
  • 3. Zeydan M. Prediction of Fabric Tensile Strength By Modelling the Woven Fabric, Book: Woven Fabric Engineering, Chapter: 8; 2010. DOI: 10.5772/10473. Available from www.intechopen.com.
  • 4. Abou-Nassif G. Predicting the Tensile and Air Permeability Properties of Woven Fabrics Using Artificial Neural Network and Linear Regression Models. Journalof Textile Science & Engineering; 2015. DOI: 10.4172/2165-8064.1000209
  • 5. Majumdar A. Ghosh A. et al. Empirical Modelling of Tensile Strength of Woven Fabrics. Fibers and Polymers.2008; 9(2): 240-245.
  • 6. Malik Z. Arain F. Modeling The Tensile Strength of Woven Fabrics Made From 100 % Cotton Warp Yarns and Polyester/Cotton Blended Weft Yarns. Conference; April (2014). Available from https://www.researchgate.net/publication/290356059
  • 7. Hedfi H. Ghith A. . Fabric Drape Prediction Using Artificial Neural Networks and Finite Element Method. International Journal of Scientific & Engineering Research. 2014; 5(7).
  • 8. Erenler A. Oğulata R. Prediction of Fabric Stiffness. Journal of Materials Science and Engineering. 2018;8 (3-4): PP. 70-75.
  • 9. Mustafa E. Malek A. A statistical prediction model for pilling grades of blended worsted fabrics based on fabric bending rigidity . Alexandria Engineering Journal .2022; 61:1615–1621.
  • 10. Ogulata S. Sahin C. The Prediction of Elongation and Recovery of Woven Bi-Stretch Fabric Using Artificial Neural Network and Linear Regression Models. FIBRES & TEXTILES in Eastern Europe. 2006; 14(56).
  • 11. Hadizadeh M. Jeddi A. The Prediction of Initial Load-extension Behavior of Woven Fabrics Using Artificial Neural Network. Textile Research Journal.2009; 79(17):1599–1609. DOI: 10.1177/0040517509102396.
  • 12. Marasović P. Penava Ž. Modelling the Stress-Strain Curve of Plane-Weave Fabric with Mathematical Models. Textile & Leather Review. 2022; 5:374-391
  • 13. Booth JE. Principles of textile testing: an introduction to physical methods of testing textile fibres, yarns and fabrics:London: National Trade Press Ltd;1961.
  • 14. Hossain M. Datta E. A Review on Different Factors of Woven Fabrics’ Strength Prediction. Science Research.2016; 4(3):88-97. ISSN: 2329-0935 (Print); ISSN: 2329-0927 (Online) , http://www.sciencepublishinggroup.com/j/sr doi:10.11648/j.sr.20160403.13
  • 15. Mishra S. Majumdar A. Modeling of Yarn Strength Utilization in Cotton Woven Fabrics using Multiple Linear Regression. Journal of Engineered Fibers and Fabrics.2014; 9(2).
  • 16. Zavec D. Geršak J. Investigations of the relation between fabric mechanical properties and behavior. International Journal of Clothing Science and Technology.2003; 15 (3/4): pp. 231-240. https://doi.org/10.1108/09556220310478332
  • 17. Hearle J. Grosberg P. Structural Mechanics of Fibres, Yarns and Fabrics: Wiley Interscience. New York; 1969.
  • 18. Saville P. Physical Testing of Textiles: Woodhead Publishing Limited. 2002: 115-167.
  • 19. Mclntyre E. Daniels N. Textile Terms and Definitions. 10th ed.: Textile Institute, Manchester;1995.
  • 20. Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method). . Available from https://www.astm.org/d5035-95.html
  • 21. Behera B, Guruprasad R. Predicting Bending Rigidity of Woven Fabrics Using Artificial Neural Networks. Fibers and Polymers. 2010; 11(8): 1187-1192.
  • 22. Özdemir H, Oğulata R. Effect of Yarns Producing Different Spinning Systems on Bending Resistance of knitted fabrics. Tekstil ve Konfeksiyon.2010; 20(4):313 – 319.
  • 23. Özgüney A, Taşkin C. Handle Properties of the Woven Fabrics Made of Compact Yarns. Tekstil ve Konfeksiyon. 2009.
  • 24. Standard Test Method for Stiffness of Fabrics. Available from https://www.astm.org/d1388.html
  • 25. Walpole R, Myers R. Probability & Statistics for Engineers & Scientists, Ninth edition: Pearson Education, Inc; 2012.
  • 26. Moreno J, Pol R, Abad A. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema. 2013; 25(4): 500-506.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec23dcc0-67a8-4607-96de-cd470d3952f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.