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Abstract
This study aims to obtain an accurate prediction model of mechanical properties of woven fabric to achieve customer satisfaction. 
Samples of plain woven fabric were produced from different yarn counts and blend ratios of cotton and polyester of weft yarn at 
different weft densities. Mechanical properties such as tensile strength, bending stiffness and elongation% in both the warp and 
weft directions were tested. The prediction model was based on Artificial Neural Networks (ANNs). For each model, thirty-nine 
samples were used for training and fifteen for testing prediction performance. Findings indicated that the ANN achieved a perfect 
performance in predicting all properties.
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1.  Introduction 

Lately, fabric production operations have 
become nearly entirely automated in order 
to achieve high productivity and high 
quality while meeting consumer demands. 
Tensile strength, fabric stiffness, and 
elongation are the mechanical qualities 
of woven fabric which have a significant 
impact on the fabric’s durability, comfort, 
lifetime, and overall quality. As a result, 
predicting fabric mechanical qualities 
like strength, elongation, and stiffness 
is a complicated relationship, which is 
influenced by fabric design, warp and weft 
densities 1, 2 , and customer satisfaction. 
Therefore, testing these properties 
should be done regularly to check the 
achievements of required specifications. 
On the other hand, more testing means 
high waste of material and money. 
Therefore, predicting the values of these 
properties saves testing time and, hence,  
cost. According to literature studies, 
regression analysis and artificial neural 
networks have been used to predict fabric 
properties. Numerous prediction models 
based on regression analysis have been 
introduced. Artificial neural networks 
(ANNs) are powerful in modeling 
complicated outcomes in textile processes. 
Recently, artificial neural networks have 
been used successfully to predict various 
properties of woven fabrics. Some studies 
predict the mechanical properties of 
woven fabrics using one or both of the 
prediction approaches.

Concerning tensile strength, Zeydan 3, 
 for example, introduced a new 
computational modeling technique to 
the predict tensile strength of jacquard 
woven fabric based on TDOE (Taguchi 
Design of Experiment), ANN, GA-ANN 
(Genetic Algorithm Based Artificial 
Neural Network) hybrid structure and 
multiple regression methodology. The 
parameters studied were fiber type 
and counts of warp and weft yarns, as 
well as weft and warp densities. By 
comparing traditional techniques like 
multiple regression modeling and the 
computational modeling proposed, the 
GA-ANN hybrid technique was found 
as a suitable modeling approach. In 
addition, outcomes revealed that the 
most important factor affecting the fabric 
strength is warp density according to 
the S/N Ratio. Abou-Nassif 4 initiated 
two prediction models to predict tensile 
strength, extension and air permeability 
properties of woven fabrics using Linear 
Regression and Artificial Neural Network 
Models. Experimental parameters were 
the weft yarn count, twist multiplier and 
weft density. By comparing prediction 
results of the proposed models based 
on (R2-value), it was found that ANN is 
more accurate than the regression model 
at predicting the characteristics of woven 
fabrics. Majumdar et al. 5 developed 
two empirical modeling methods based 
on an artificial neural network (ANN) 
and linear regression in order to predict 

woven fabric strength in the warp 
direction. Experimental variables were 
the weft count,  strength and elongation 
of warp yarn, as well as warp and weft 
densities. Results showed that the two 
most significant factors affecting fabric 
strength in the warp direction were 
warp yarn strength and warp density. 
In addition, both prediction models 
were able to predict the fabric strength 
precisely, but the ANN model achieved 
higher prediction accuracy than that by 
the regression model. Malik and Arain 
6 introduced an empirical regression 
models to predict the tensile strength of 
woven fabrics produced by different warp 
and weft yarn count densities. Prediction 
results revealed a very high accuracy of 
the models developed.

Regarding the prediction of woven 
fabric stiffness, Hedfi et al.7 presented 
a simulation model to predict the fabric 
drape properties of woven fabric based on 
Artificial Neural Networks and the Finite 
Element Method, concluding that using 
the Finite Element Method increased 
the accuracy of predication of this 
model.  Erenler and Oğulata8 established  
different prediction models using a feed-
forward and back propagation network 
to predict woven fabric stiffness by 
modeling the fabric construction, such 
as the weft yarn count, fabric design 
and weft density, in addition to finishing 
properties.  The models varied from 
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the properties of ANNs, such as the 
transfer function, numbers of neurons 
and number of hidden layers. The high 
accuracy model is selected from among 
ten models according to its high degree of 
correlation “R-value”. Eman et al. 9  used 
bending stiffness as a regressor to predict 
the pilling of woven fabrics. 

In addition, a number of studies have 
been conducted on the prediction of 
the elongation and extension of woven 
fabric. For example, Ogulata et al.10 
introduced prediction models of the 
elongation and recovery of polyester/
viscose/elastane blended woven fabric 
using both regression models and 
ANN. In this study, results showed 
that prediction by ANN was more 
accurate than by the regression model.  
In addition, elongation prop erties were 
predicted more precisely using both 
models than for recovery. Hadizadeh et 
al. 11 proposed prediction using an ANN 
back-propagation algorithm to predict the 
performance of the initial load-extension 
of plain weave, and accurate mapping 
results were generalised. Marasović and 
Penava 12 introduced three mathematical 
models based on nonlinear regression 
to determine the breaking force and 
elongation at break for samples of plain 
woven fabrics with various angles. From 
the previous literature, it is seen that 
there is a lack of studies which present 
a prediction model for all mechanical 
properties together in both the warp and 
weft directions. Thus, the main aim of this 
research work is to introduce a prediction 
model of woven fabric properties such as 
tensile strength, stiffness and elongation 
in both the warp and weft directions 
using artificial neural networks. 

2.  Experimental 
2.1.  Materials 

Samples from plain woven fabric were 
produced on an air jet weaving loom. The 
fabric construction consisted of warp yarn 
of (50/1 Nm) from (65% Polyester /35% 
Cotton) and  two levels of weft yarn (40/1 
Nm and 50/1 Nm) from three levels of  
blend ratios (100% cotton, 50% Polyester 
/50% and  65% Polyester /35%) at warp 
density (0.30 ends/m) and three levels 

of weft densities (0.23, 0.25 and 0.27 
picks/m).  Table (1) shows the different 
factors and levels of weft yarns used in 
the manufacturing. Table (2) shows the 
experimental design of producing the test 
samples at the same warp and warp yarn 
density with different weft yarns and weft 
densities. Each experiment was repeated 
three times and fifty-four readings 
recorded.

2.2.  Methodology 

Before testing, all test samples were 
conditioned for 24 hours in the standard 
testing atmosphere: relative humidity 
65%±2 and temperature 20±2ºC. The 

mechanical properties were tested 
according to the following procedures.

2.2.1.  Tensile strength

Fabric strength is one of the most 
important properties for woven fabric 
performance, affecting its quality; 
therefore, it is an important feature to 
estimate the performance of woven 
fabrics in many applications 13-17.  Tensile 
strength is measured by the maximum 
force recorded in extending  the sample 
tested to the moment of rupture at the 
breaking point. Consequently, this 
force breaks a large number of yarns 
simultaneously in either the warp or 

Levels

Factors 1 2 3

X1 Weft density  (picks/m) 0.23 0.25 0.27

X2 Weft yarn count  (Nm) 40/1 50/1 ------

X3 Fiber blend ratio of weft yarn Polyester 
(PE %)

0% 50% 65%

X4 Fiber blend ratio of weft yarn Cotton 
(C%)

100% 50% 35%

Table 1. Factors and levels of weft yarns

Run

X1 X2 X3 X4

Picks/m
Weft yarn

PE  % C %
count (Nm)

1 1 1 1 1

2 1 1 2 2

3 1 1 3 3

4 1 2 1 1

5 1 2 2 2

6 1 2 3 3

7 2 1 1 1

8 2 1 2 2

9 2 1 3 3

10 2 2 1 1

11 2 2 2 2

12 2 2 3 3

13 3 1 1 1

14 3 1 2 2

15 3 1 3 3

16 3 2 1 1

17 3 2 2 2

18 3 2 3 3

Table 2.  Experimental model 



Sherien N. Elkateb

56 57

weft directions which cannot resist any 
more 18, 19. The tensile was measured in 
both the warp and weft directions by 
measuring the breaking force according 
to the strip method (ASTM:D 5035) 20. 
Specimens with dimensions( of 0.2 m) 
length and (0.025 m) raveled width were 
cut in the warp and weft directions. On 
the apparatus, the gauge length used was 
(0.075m), at a speed of (0.3 m/min).

2.2.2.  Elongation

Elongation is the ratio of the increase in 
the length of the specimen to its starting 
length. Hence, elongation is usually 
defined as strain or percentage extension 
18. Therefore, it is one of the major 
features of woven fabrics which are 
especially made from elastane that affects 
fabric recovery and comfort, which, in 
turn, impacts fabric quality 10. Breaking 
elongation is recorded at the rupture 
point of the breaking force. Thus, both 
the tensile strength (N) and elongation 
% were measured together in both warp 
wise and weft wise in accordance with 
(ASTM:D 5035-95)  20.

2.2.3.  Fabric stiffness 

Fabric stiffness is one of the most 
important properties of fabrics as the 
bending resistance of  fabrics, which is one 
of the objective measurement methods, is 
an indicator of the fabric handle, drape, 
buckling behavior, wrinkle-resistance 
and crease resistance of textile products 
21-23. Stiffness was measured by measuring 
the bending length in both the warp 

and the weft directions.  The bending 
length was measured by a cantilever 
bending tester,  developed by the Shirley 
Institute, according to (ASTM:D 1388)24. 
Specimens with dimensions (2.5*22*10-

4 m2) were cut in the warp and weft 
directions. Each specimen bends under 
its own weight to a fixed angle (41.5°) 
from the horizontal plane. The length 
of the sample overhang and the angle 
were then used to calculate the bending 
stiffness of the fabric samples. 

2.3.  Artificial Neural 
Network Prediction Model

Artificial neural networks (ANNs) 
have a wide range of application in the  
textile industry as they are powerful in 
many prediction-related problems in 
the textile sector, such as the prediction 
of textile properties like identification, 
pattern recognition, classification and 
defect analysis 8. Figure 1 represents the 
network structure for the prediction of six 
mechanical properties: (tensile strength 
(N), bending length (m) and elongation %) 
in both the warp and weft directions. This 
ANN model consists of one input layer 
with four inputs (X1-X4), one hidden 
layer with ten neurons, and an output layer 
with six outputs. Table 3 shows the ANN 
training algorithm for a feed- forward 
back propagation neural network, for 
which MATLAB 2013 software was used. 
The prediction model for the mechanical 
properties of the woven fabrics tested was 
carried out by artificial neural networks. 
Thirty-nine samples were used for 
training and fifteen samples for testing the 
prediction model performance. 

2.4.  Prediction Accuracy 

The prediction accuracy was 
evaluated according to  statistical 
variables. R-Squared (coefficient of 
determination), MSE (mean squared 
error), RMSE (root mean squared 
error), MAE (mean absolute error) and 
MAPE (mean absolute percentage error) 
are calculated by the following equations 
1-525. Moreover, MAPE significantly 
indicates the prediction performance.  

R2= 1− 𝛴𝛴𝛴𝛴(𝑦𝑦𝑦𝑦¡−ŷ)²
𝛴𝛴𝛴𝛴(𝑦𝑦𝑦𝑦¡−ȳ)²

                                                        (1) (1)

MSE=1
𝑁𝑁𝑁𝑁
∑ (𝑦𝑦𝑦𝑦¡−ŷ)²𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖1                                                (2)  (2)

 
RMSE=�1

𝑁𝑁𝑁𝑁
∑ (𝑦𝑦𝑦𝑦¡−ŷ)²𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖1                                          (3) (3)

MAE=1
𝑁𝑁𝑁𝑁
∑ 𝑦𝑦𝑦𝑦¡−ŷ ∨𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖1                       (4) (4)

MAPE=1
𝑁𝑁𝑁𝑁
∑ 𝑦𝑦𝑦𝑦¡−ŷ ∨

𝑦𝑦𝑦𝑦¡
𝑥𝑥𝑥𝑥100%𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖1                            (5) (5)

Where: y¡: actual value of y ,  ȳ: average 
of y, and  ŷ: predicted value of y

3.  Results and Discussion

3.1.  Training Results

The best training performance results 
were obtained at the number of neurons 
(n=10). Results of the artificial neural 
network proposed are summarised as 
follows: the MSE “Mean squared error” 
for training, validation and testing are 
0.023, 0.084 and 0.026,  and R values - 
“ coefficient of correlation “ are 0.99  in 
each case. The overall MSE is 0.016, and 
the overall R is 1, which means that there 
is high correlation and  close relationship 
between the measured and predicted 
values of the properties tested, as  shown 
in Figure 2.

3.2.  Testing Results

The testing data set contains fifteen 
samples; Tables 4 and 5 represent 
comparisons between actual and predicted 
values by the ANN model for mechanical 
properties in both the warp and weft 
directions in series. Furthermore, Table 6 
compares the precision of the prediction 

-Train network using Levenberg-Maquardt  back-propagation 
- Activation function: (trainlm).                  -Hidden layer size =10 
-Performance: Mean squared error (mse)    -Gradient: 1.00e-05

Table 3. ANN Training Algorithm

Fig. 1.  Neural Network architecture for all mechanical properties  
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model for the testing data set to express 
how well the model performs in its 
prediction using statistical indicators (R2, 
MSE, RMSE, MAE and MAPE).  First, 
the prediction performance in the warp 
direction is evaluated according to R2 
values, which are (1.00, 0.97  and 0.99 
) for the tensile strength, stiffness, and 
elongation % in series, which refer to 
satisfactory results and high correlation 
between actual and predicted values. In 

addition, low values of (MSE, RMSE 
and MAE) indicate the high accuracy 
of this model.  Furthermore, MAPE 
values are (0.01%, 1.62% and 0.69%) for 
tensile strength, stiffness, and elongation 
% in series. Second, the performance 
of prediction in the weft direction is 
tested using R2 values of (1.00, 0.98, 
and 0.99) for tensile strength, stiffness, 
and elongation % in series, indicating 
satisfactory results and a high correlation 

Run
Tensile strength (N) “Stiffness” Bending length * 

10-2 (m) Elongation %

Actual Predicted Actual Predicted Actual Predicted
1 357.00 357.00 2.30 2.39 20.50 20.90

2 334.00 334.00 2.20 2.15 19.40 19.30

3 377.00 377.00 2.70 2.67 22.40 22.50

4 368.00 368.00 2.50 2.50 22.30 22.00

5 358.00 358.00 2.40 2.42 22.00 22.00

6 360.00 360.00 2.40 2.35 22.60 22.60

7 368.00 368.00 2.00 1.95 20.70 20.70

8 369.00 369.00 2.50 2.53 23.10 23.40

9 360.00 360.00 2.40 2.35 22.60 22.60

10 351.00 351.00 2.20 2.19 21.60 21.70

11 350.00 350.00 2.30 2.32 21.30 21.40

12 331.00 331.00 2.00 2.09 15.70 15.70

13 353.00 353.00 2.40 2.42 23.30 23.00

14 350.00 350.00 2.30 2.32 21.30 21.40

15 353.00 353.00 2.40 2.42 23.30 23.00

Table 4. Comparison between actual and predicted values of properties  tested  in the warp direction

Run
Tensile strength (N) “Stiffness”Bending length * 

10-2 (m) Elongation %

Actual Predicted Actual Predicted Actual Predicted
1 258.00 258.00 2.10 2.15 17.70 17.60

2 234.00 234.00 2.00 1.95 13.70 13.50

3 321.00 321.00 2.40 2.37 21.80 21.20

4 307.00 307.00 2.20 2.20 21.20 21.20

5 251.00 251.00 2.10 2.11 13.50 13.30

6 290.00 290.00 2.10 2.09 20.50 20.50

7 241.00 241.00 2.00 2.01 15.10 14.60

8 312.00 312.00 2.30 2.31 20.70 21.10

9 290.00 290.00 2.10 2.09 20.50 20.50

10 228.00 228.00 2.00 1.99 13.10 13.50

11 284.00 284.00 2.00 2.00 19.20 19.20

12 207.00 207.00 1.90 1.92 13.20 13.40

13 290.00 290.00 2.20 2.22 21.70 21.60

14 284.00 284.00 2.00 2.00 19.20 19.20

15 290.00 290.00 2.20 2.22 21.70 21.60

Table 5. Comparison between actual and predicted values of properties tested in the weft direction

Fig. 2. Overall Training Performance of 
ANN model 
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between actual and predicted values. 
Moreover, low values of (MSE, RMSE, 
and MAE) imply that this model is highly 
accurate. Furthermore, MAPE values for 
tensile strength, stiffness, and elongation 
% are (0.01%, 0.88%, and 1.14%) in 
series.

Finally, a comparison between prediction 
performances in warp and weft directions 
is shown by identical R2 values (1.00 
and 1.00), (0.97 and 0.98) and (0.99 
and 0.99) for tensile strength, stiffness, 
and elongation % in the warp and weft 
directions, respectively, indicating no 
remarkable difference between them in 
both directions. Besides, MAPE values 
are (0.01% and 0.01%), (1.62%and 
0.88%) and (0.69%and 1.14%) for tensile 
strength, stiffness, and elongation% in the 
warp and weft directions, respectively. 
Therefore, there is no significant 
difference between performance in the 
warp and weft directions because MAPE 
do not exceed 10% 26.  As a result of the 
low MAPE values, the high prediction 

accuracies are arranged from the most 
to the least accurate as follows: tensile 
strength in the weft direction, tensile 
strength in the warp direction,  elongation 
% in the warp direction, stiffness in the 
weft direction,  elongation % in the 
weft direction, and stiffness in the warp 
direction. Thus, this model can precisely 
predict all properties tested with the least 
error.

4.  Conclusions

This work introduced a predictive 
approach to predict the mechanical 
properties of woven fabric  such as 
tensile strength, fabric stiffness, and 
elongation % using artificial neural 
networks. An optimal neural network 
structure was developed by changing 
the number of neurons. The best one 
selected is 10 to obtain the best training 
performance results (R=1.00). In general, 
the ANN achieved a high performance in 
predicting all properties, with high values 

of R2 (0.97 to1.00) with least values of 
MSE(0.00 to 0.07), RMSE (0.02 to 0.27), 
MAE (0.02 to 0.19) and MAPE (from 
0.01% to 1.62%), which refer to the good 
fitting of this model and strong relation 
between actual and predicted outcomes. 
Besides,  there is no significant difference 
between performance in the warp and 
weft directions. Because of its high 
accuracy, this model is recommended 
for precisely predicting the mechanical 
properties of plain woven fabrics, which 
will be helpful in weaving mills by 
estimating all the properties required 
simultaneously. Hence, the testing cost 
and material waste will be reduced. Thus, 
it will be beneficial in achieving high 
quality with less cost.

Declaration of Conflicting 
Interests

Author declares there is no conflict of 
interest.

                 Tested properties

 Statistical factors

Tensile strength 
(N)

“Stiffness” Bending 
length * 10-2 (m) Elongation %

warp weft warp weft warp weft

R-squared :coefficient of determination 1.00 1.00 0.97 0.98 0.99 0.99

MSE :mean squared error 0.00 0.00 0.00 0.00 0.04 0.07

RMSE :root mean squared error 0.04 0.03 0.05 0.02 0.20 0.27

MAE :mean absolute error 0.03 0.02 0.04 0.02 0.15 0.19

MAPE: mean absolute percentage error 0.01% 0.01% 1.62% 0.88%   0.69% 1.14%

Table 6. Comparison between the prediction performance of all properties by ANNs
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