PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spark Plasma Sintering – new technology for obtaining tool materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spark Plasma Sintering – new technology for obtaining tool materials. Cemented carbides are a valued tool material used for tools to process, among others, wood-based materials. They are traditionally obtained using high temperatures and long periods. New electric current activated sintering methods make it possible to obtain sinters with good mechanical properties in a short time and low temperature. This paper presents a comparative analysis of conventional and advanced SPS (Spark Plasma Sintering) technology of obtaining cemented carbides.
PL
Spark Plasma Sintering – nowa technologia otrzymywania materiałów narzędziowych. Węgliki spiekane są cenionym materiałem narzędziowym, stosowanym między innymi na narzędzia do obróbki materiałów drewnopochodnych. Tradycyjnie otrzymuje się je z użyciem wysokich temperatur oraz długich czasów. Nowe metody spiekania aktywowane, prądem elektrycznym, umożliwiają otrzymanie spieków, o dobrych właściwościach mechanicznych, w krótkim czasie i niskiej temperaturze. W pracy przedstawiono analizę porównawczą konwencjonalnej oraz zaawansowanej technologii SPS (Spark Plasma Sintering) otrzymywania węglików spiekanych.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Wood Sciences and Furniture, Department of Mechanical Processing of Wood
Bibliografia
  • 1. SHIN S. G., 2000: RETRACTED ARTICLE: Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering. Metals and Materials International, 6(3), 195-201.
  • 2. LEDOUX M. J., HUU C. P., GUILLE J., DUNLOP H., 1992: Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactions: I. Catalyst activation and stabilization: Reaction of n-hexane. Journal of Catalysis, 134(2), 383-398.
  • 3. FANG Z. Z., WANG H., KUMAR V., 2017: Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective. International Journal of Refractory Metals and Hard Materials, 62, 110-117.
  • 4. LIN H., SUN J., LI C., HE H., QIN L., LI Q., 2016: A facile route to synthesize WC–Co nanocomposite powders and properties of sintered bulk. Journal of Alloys and Compounds, 682, 531-536.
  • 5. FANG Z. Z., WANG X., RYU T., HWANG K. S., SOHN H. Y., 2009: Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–a review. International Journal of Refractory Metals and Hard Materials, 27(2), 288-299.
  • 6. RUDY E., BENESOVSKY F., RUDY E., 1962: Investigations of vanadium-tungsten-carbon systems. Monatsh. Chem, 93, 693-707.
  • 7. CHEN H., YANG Q., YANG J., YANG H., CHEN L., RUAN J., HUANG, Q., 2017: Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.% Co cemented carbides. Journal of Alloys and Compounds, 714, 245-250.
  • 8. YU B., LI Y., LEI Q., NIE Y., 2019: Microstructures and mechanical properties of WC-Co-xCr-Mo cement carbides. Journal of Alloys and Compounds, 771, 636-642.
  • 9. LAY S., HAMAR-THIBAULT S., LACKNER A., 2002: Location of VC in VC, Cr3C2 codoped WC–Co cermets by HREM and EELS. International Journal of Refractory Metals and Hard Materials, 20(1), 61-69.
  • 10. LAY S., THIBAULT J., HAMAR-THIBAULT S., 2003: Structure and role of the interfacial layers in VC-rich WC-Co cermets. Philosophical Magazine, 83(10), 1175-1190.
  • 11. SHEIKH-AHMAD J.Y., BAILEY J.A., 1999: The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear, 225, 256-266.
  • 12. ANDRÉN H.O. (2001). Microstructures of cemented carbides. Materials & Design, 22(6), 491-498.
  • 13. UPADHYAYA G.S., 2001: Materials science of cemented carbides—an overview. Materials & Design, 22(6), 483-489.
  • 14. ORRU R., LICHERI R., LOCCI A.M., CINCOTTI A., CAO G., 2009: Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering: R: Reports, 63(4-6), 127-287.
  • 15. ANSELMI-TAMBURINI U., GARAY J.E., MUNIR Z.A., 2005: Fundamental investigations on the spark plasma sintering/synthesis process: III. Current effect on reactivity. Materials Science and Engineering: A, 407.1-2: pp. 24–30
  • 16. VANMEENSEL K., LAPTEV A., VAN DER BIEST O., VLEUGELS J., 2007: Field assisted sintering of electro-conductive ZrO2-based composites. Journal of the European Ceramic Society, 27(2-3), 979-985.
  • 17. MCWILLIAMS B., ZAVALIANGOS A., CHO K.C., DOWDING R.J., 2006: The modeling of electric-current-assisted sintering to produce bulk nanocrystalline tungsten. Jom, 58(4), 67-71.
  • 18. GUILLON O., GONZALEZ‐JULIAN J., DARGATZ B., KESSEL T., SCHIERNING G., RÄTHEL J., HERRMANN M., 2014: Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials, 16(7), 830-849.
  • 19. CAVALIERE P. (Ed.), 2019: Spark plasma sintering of materials: advances in processing and applications. Springer.
  • 20. HEBDA M., 2012: Spark Plasma Sintering-nowa technologia konsolidacji materiałów proszkowych. Czasopismo Techniczne. Mechanika, 109(z. 6-M), 47-55.
  • 21. SUÁREZ M., FERNÁNDEZ A., MENÉNDEZ J. L., TORRECILLAS R., KESSEL H. U., HENNICKE J., KESSEL T., 2013: Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. Sintering applications, 13, 319-342.
  • 22. ZHOU Y., HIRAO K., YAMAUCHI Y., KANZAKI S., 2003: Effects of heating rate and particle size on pulse electric current sintering of alumina. Scripta materialia, 48(12), 1631-1636.
  • 23. MUNIR Z.A., ANSELMI-TAMBURINI U., OHYANAGI M., 2006: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of materials science, 41(3), 763-777.
  • 24. SHEN Z., JOHNSSON M., ZHAO Z., NYGREN M., 2002: Spark plasma sintering of alumina. Journal of the American Ceramic Society, 85(8), 1921-1927.
  • 25. VANMEENSEL K., LAPTEV A., VAN DER BIEST O., VLEUGELS J., 2007: Field assisted sintering of electro-conductive ZrO2-based composites. Journal of the European Ceramic Society, 27(2-3), 979-985.
  • 26. RUMMAN M.R., XIE Z., HONG S.J., GHOMASHCHI R., 2015: Effect of spark plasma sintering pressure on mechanical properties of WC–7.5 wt % Nano Co. Materials & Design, 68, 221-227.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec236f01-437d-40cb-9bff-97153b453d7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.