PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Balancing of a linear elastic rotor-bearing system with arbitrarily distributed unbalance using the Numerical Assembly Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new application of the Numerical Assembly Technique is presented for the balancing of linear elastic rotor-bearing systems with a stepped shaft and arbitrarily distributed mass unbalance. The method improves existing balancing techniques by combining the advantages of modal balancing with the fast calculation of an efficient numerical method. The rotating stepped circular shaft is modelled according to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-state harmonic response, eigenvalues and the associated mode shapes of the rotor. The displacements of a simulation are compared to measured displacements of the rotor-bearing system to calculate the generalized unbalance for each eigenvalue. The generalized unbalances are modified according to modal theory to calculate orthogonal correction masses. In this manner, a rotor-bearing system is balanced using a single measurement of the displacement at one position on the rotor for every critical speed. Three numerical examples are used to show the accuracy and the balancing success of the proposed method.
Rocznik
Strony
art. no. e138237
Opis fizyczny
Bibliogr. 18 poz., il., tab., wykr.
Twórcy
autor
  • Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
  • Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
  • Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
  • Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
Bibliografia
  • [1] J. Tessarzik, Flexible rotor balancing by the exact point speed influence coefficient method. Latham: Mechanical Technology Incorporated, 1972.
  • [2] P. Gnielka, “Modal balancing of flexible rotors without test runs: An experimental investigation,” Journal of Vibrations, vol. 90, no. 2, pp. 152–170, 1982.
  • [3] K. Federn, “Grundlagen einer systematischen Schwingungsentstörung wellenelastischer Rotoren,” VDI Bericht, vol. 24, pp. 9–25, 1957.
  • [4] A. G. Parkinson and R. E. D. Bishop, “Residual vibration in modal balancing,” Journal of Mechanical Engineering Science, vol. 7, pp. 33-39, 1965.
  • [5] W. Kellenberger, “Das Wuchten elastischer Rotoren auf zwei allgemeinelastischen Lagern,” Brown Boveri Mitteilungen, vol. 54, pp. 603–617, 1967.
  • [6] A.-C. Lee, Y.-P. Shih, and Y. Kang, “The analysis of linear rotor bearing systems: A general Transfer Matrix Method,” Journal of Vibration and Accoustics, vol. 115, no. 4, pp. 490–497, 1993.
  • [7] J.-S. Wu and H. M. Chou, “A new approach for determining the natural frequency of mode shapes of a uniform beam carrying any number of sprung masses,” Journal of Sound and Vibration, vol. 220, no. 3, pp. 451–468, 1999.
  • [8] J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical solution for whirling speeds and mode shapes of a distributed-mass shaft with arbitrary rigid disks,” Journal of Applied Mechanics, vol. 81, no. 3, pp. 034 503–1–034 503–10, 2014.
  • [9] M. Klanner, M. S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor- bearing system with a discontinuous shaft and arbitrarily distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, 2020, pp. 1257–1272.
  • [10] M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Applied and Computational Mechanics, vol. 14, no. 1, pp. 31–50, 2019.
  • [11] B. Deepthikumar, A. S. Sekhar, and M. R. Srikanthan, “Modal balancing of flexible rotors with bow and distributed unbalance,” Journal of Sound and Vibration, vol. 332, pp. 6216–6233, 2013.
  • [12] O. A. Bauchau and J. I. Craig, Structural Analysis – With Applications to Aerospace Structures. Heidelberg: Springer Verlag, 2009.
  • [13] R.E.D. Bishop and A.G. Parkinson, “On the isolation of modes in balancing of flexible shafts, Proc. Inst. Mech. Eng., vol. 117, pp. 407-426, 1963.
  • [14] X. Rui, G. Wang, Y. Lu, and L. Yunm, “Transfer Matrix Method for linear multibody systems,” Multibody Syst. Dyn., vol. 19, pp. 179-207, 2008.
  • [15] I.N. Bronstein, K.A. Semendjajew, and E. Zeidler, Taschenbuch der Mathematik. Stuttgard : Teubner, 1996.
  • [16] D. Bestle, L. Abbas, and X. Rui, “Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems,” Multibody Syst. Dyn., vol. 32, pp. 429–444, 2013.
  • [17] B. Xu and L. Qu, “A new practical modal method for rotor balancing.” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 215, pp. 179-190, 2001.
  • [18] J. Tessartizik, Flexible rotor balancing by the influence coefficient method. Part 1 : Evaluation of the exact point speed and least squares procedure. Latham: Mechanical Technology Incorporated, 1972.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec2222b3-957a-482e-a820-99cfeec66dec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.