PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compound-combination synchronization of chaos in identical and different orders chaotic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a new synchronization scheme called compound-combination synchronization. The scheme is investigated using six chaotic Josephson junctions evolving from different initial conditions based on the drive-response configuration via the active backstepping technique. The technique is applied to achieve compound-combination synchronization of: (i) six identical third order resistive-capacitive-inductive-shunted Josepshon junctions (RCLSJJs) (with three as drive and three as response systems); (ii) three third order RCLSJJs (as drive systems) and three second order resistive-capacitive-shunted Josepshon junctions (RCSJJs (as response systems). In each case, sufficient conditions for global asymptotic stability for compound-combination synchronization to any desired scaling factors are achieved. Numerical simulations are employed to verify the feasibility and effectiveness of the compound-combination synchronization scheme. The result shows that this scheme could be used to vary the junction signal to any desired level and also give a better insight into synchronization in biological systems wherein different organs of different dynamical structures and orders are involved. The scheme could also provide high security in information transmission due to the complexity of its dynamical formulation.
Rocznik
Strony
463--490
Opis fizyczny
Bibliogr. 44 poz., wykr., wzory
Twórcy
autor
  • Department of Physics, University of Agriculture, Abeokuta, Department of Physics, University of Lagos, Lagos, Nigeria
autor
  • Department of Physics, University of Lagos, Lagos, Nigeria
  • Department of Physics, University of Lagos, Lagos, Nigeria
Bibliografia
  • [1] B. Soodchomshom, I. M. Tang and R. Hoosawat: Josephson effects in mgb2/thin insulator/mgb2 tunnel junction. Solid State Communication, 149 (2009) 1012-1016.
  • [2] M. A. C. Beltran: Development of a Josephson parametric amplifier for the preparation and detection of nonclassical states of microwave fields. PhD thesis, University of Colorado, Department of Physics, Faculty of Graduate School, 2010.
  • [3] K. K. Likharev: Dynamics of Josephson Junction and Circuit. Gordon and Breach, NY, 1998.
  • [4] J. W. Spargo: Applied superconductivity conf. (special issue). IEEE Trans. on Applied Superconductivity, 13(I-III), (2003).
  • [5] C. R. Nayak and V. C. Kuriakose: Dynamics of coupled Josephson junctions under the inflence of applied fields. Physics Letters, 365 (2007), 284-289.
  • [6] E. Kurt and M. Canturk: Chaotic dynamics of resistively coupled dc-driven distinct Josephson junctions and the effects of circuit parameters. Physica D, 238(22), (2009), 2229-2237.
  • [7] X. S. Yang and Q. D. Li: A computer-assisted proof of chaos in Josephson junctions. Chaos, Solitons and Fractals, 27(1), (2006), 25-30.
  • [8] T. Kawaguchi: Directed transport and complex dynamics of vortices in a Josephson junction network driven by modulated currents. Physica C, 470(20), (2010), 1133-1136.
  • [9] S. P. Benz and C. Burroughs: Coherent emission from two dimensional Josephson junction arrays. Applied Physics Letters, 58(19), (1991), 2162-2164.
  • [10] Y. L. Feng, X. H. Zhang, Z. G. Jiang and K. E. Shen: Generalized synchronization of chaos in RCL-shunted Josephson junctions by unidirectionally coupling. Int. J. of Modern Physics B, 24(29), (2010), 5675-5682.
  • [11] L. M. Pecora and T. L. Carroll: Synchronization of chaotic systems. Physica Review Letters, 64 (1990), 821-824.
  • [12] H. Haken: Synergetic: from pattern formation to pattern analysis and pattern recognition. Int. J. of Bifurcation Chaos and applied Science and Engineering, 4 (1994), 1069-1083.
  • [13] S. K. Dana: Spiking and bursting in Josephson junction. IEE Trans. on Circuits and Systems II: Express Briefs, 53(10), (2006), 1031-1034.
  • [14] R. N. Chirt a and V. C. Kuriakose: Phase synchronization in an array of driven Josephson junctions. Chaos, 18 (2008), 013125-(6pp).
  • [15] D. Chevri aux, R. Khomeriki and J. Leon: Theory of a Josephson junction parallel array detector sensitive to very weak signals. Physical Review B, 73 (2006), 214516- (7pp).
  • [16] S. Al-Kawaja: Chaotic dynamics of underdamped josephson junctions in a ratchet potential driven by a quasiperiodic external modulation. Physica C, 420(30), (2005).
  • [17] U. E. Vincent, A. Ucar, J. A. Laoye and S. O. Kareem. Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C, 468(5), (2008), 374-382.
  • [18] S. K. Dana, D. C. Sengupta and K. D. Edoh: Chaotic dynamics in Josephson junction. IEEE Trans. on Circuit Systems I, Fundamental Theory and Applications, 48 (2001), 990-996.
  • [19] A. N. Njah, K. S. Ojo, G. A. Adebayo and A. O. Obawole: Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C, 470 (2010), 558-564.
  • [20] R. Guo, U. E. Vincent and B. A. Idowu: Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive control. Physica Scripta, 79: (2009), 036801-(6pp).
  • [21] D. -Y. Chen, W. -L. Zhao, X. -Y. Ma and R. -F. Zhang: Control and synchronization of chaos in RCL-shunted Josephson junction with noise disturbance using only one controller term. Abstract and Applied Analysis, 2012 (2012), 378457-(14pp).
  • [22] V. V. A. Pikovsky: Synchronization of a Josephson junction array in terms of global variables. Physical Review E, 88 (2013), 022908-(5pp).
  • [23] J. Tian, H. Qiu, G. Wang, Y. Chen and L. B. Fu: Measure synchronization in a two species bosonic Josephson junctions. Physical Review E, 88 (2013), 032906- (8pp).
  • [24] A. N. Njah and K. S. Ojo: Synchronization via backstepping nonlinear control of externally excited φ 6 van der pol and φ 6 duffing oscillators. Far East Journal of Dynamical Systems, 11(2), (2009), 143-159.
  • [25] K. S. Ojo, A. N. Njah and G. A. Adebayo: Anti-synchronization of identical and non-identical φ 6 van der pol and φ 6 duffing oscillator with both parametric and external excitations via backstepping approach. Int. J. of Modern Physics B, 25(14), (2011), 1957-1969.
  • [26] F. Nian and X. Wang: Projective synchronization of two different dimensional nonlinear systems. Int. J. of Modern Physics B, 27(21), (2013), 1350113-(13pp).
  • [27] D. Ghosh, I.Grosu and S. K. Dana: Design of coupling for synchronization in time-delay systems. Chaos, 22(3), (2012), 03311-(7pp).
  • [28] A. A. Koronovskii, O. I. Moskalenko, S. A. Shurygina and A. E. Hramov. Generalized synchronization in discrete maps. new point of view on weak and strong synchronization. Chaos, Solitons and Fractals, 46 (2013), 12-18.
  • [29] F. -H. Min: Function projective synchronization for two gyroscopes under specific constraints. Chinese Physics Letters, 30(7), (2013), 070505-(5pp).
  • [30] Q. Y. Miao, J. A. Fang, Y. Tang and A. H. Dong: Increase-order projective synchronization of chaotic systems with time delay. Chinese Physics Letters, 26(5), (2009), 050501-(4pp).
  • [31] M. M. Alsawalha and M. S. M. Noorani: Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Communication in Nonlinear Science and Numerical Simulation, 17 (2012), 1908-1920.
  • [32] X. Wang, X. Guo and L. Wang: Finite-time synchronization of a new hyperchaotic lorenz system. Int. J. of Modern Physics B, 27 (2013), 1350033-(8pp).
  • [33] K. S. Sudheer and M. Sabir: Hybrid synchronization of hyperchaotic Lu system. Pramana, 73(4), (2009), 781-786.
  • [34] S. Wen, S. Chen and J. Lu: A novel hybrid synchronization of two coupled complex networks. IEEE Int. Symp. on Circuits and Systems. (2009), 1911-1914.
  • [35] R. Femat and G. SolisPerales: Synchronization of chaotic systems of different order. Physica Review E, 65 (2002), 0362261-0362267.
  • [36] J. Chen and Z. R. Liu: Method of controlling synchronization in different systems. Chinese Phyics Letters, 20(9), (2003), 141-143.
  • [37] S. Bowong and P. V. E McClintock: Adaptive synchronization between chaotic dynamical systems of different order. Physics Letters, 358 (2006), 134-141.
  • [38] M. C. Ho, Y. C. Hung, Z. Y. Liu and I. M. Jiang: Reduced-order synchronization of chaotic with parameters unknown. Physics Letters, 348 (2006), 251-259.
  • [39] S. Bowong: Stability analysis for the synchronization of chaotic system of different order: application to secure communications. Physics Letters A, 326 (2004), 102-113.
  • [40] L. Runzi, W. Yinglan and D. Shucheng: Combination synchronization of three chaotic classic chaotic systems using active backstepping. Chaos, 21 (2011), 0431141-0431146.
  • [41] L. Runzi and W. Yingian. Active backstepping-based combination synchronization of three chaotic systems. Advanced Science, Engineering and Medicine, 4:142-147, 2012.
  • [42] L. Runzi and W. Yingian: Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos, 22 (2012), 02310901-02310910.
  • [43] J. Sun, Y. Shen, G. Zhang, C. Xu, and G. Cui: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dynamics, 73 (2013), 1211-1222.
  • [44] J. Sun, Y. Shen, Q. Yin, and C. Xu: Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos, 23 (2013), 012140- (10pp).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec1c1869-82f3-4ddd-9d59-9f114c4d7bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.