Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to prove some results on the existence and uniqueness of elements of best approximation and continuity of the metric projection in metric spaces. For a subset M of a metric space (X, d), the nature of set of those points of X which have at most one best approximation in M has been discussed. Some equivalent conditions under which an M-space is strictly convex have also been given in this paper.
Czasopismo
Rocznik
Tom
Strony
113--121
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India
autor
- Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India
Bibliografia
- [1] Al-Thagafi M.A., Best approximation and fixed points in strong m-starshaped metric spaces, Internet. J. Math. Math. Sci., 18(1995), 613-616.
- [2] Bandyopadhyay P., Li Y., Lin B-L. and Narayana D., Proximinality in Banach spaces, J. Math. Anal. Appl., 341(2008), 309-317.
- [3] Cobzas S., Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal., 3(2005), 259-285.
- [4] Freese R., Murphy G., Andalafte E., Strict convexity in M-space, J. Geom., 34(1989), 42-49.
- [5] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
- [6] Khalil R., Best approximation in metric spaces, Proc. Amer. Math. Soc., 103(1988), 579-586.
- [7] Menger K., Untersuchungen uber allegemeine Metrik, Math. Ann., 100 (1928), 75-163.
- [8] Narang T.D., Best approximation and strict convexity of metric spaces, Arch. Math. Scripta Fac. Sci. Nat. Ujeb Brunensis, 17(1981), 87-90.
- [9] Narang T.D., Gupta S., Proximinality and coproximinality in metric linear spaces, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 69(1)(2015), 83-90.
- [10] Narang T.D., Gupta S., On best approximation and best coapproximation, Thai J. Math., 14(2016), 505-516.
- [11] Narang T.D., Tejpal S., Equivalence of various types of convexities in metric spaces, Bull. Gauhati University Math. Association, 9(2006), 54-61.
- [12] Rao G.S., Tools and techniques in approximation theorey, Math. Stud., 81 (2012), 115-133.
- [13] Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
- [14] Steckin S.B., Approximation properties of sets in linear normed space, Rev. Roumaine Math. Pures Appl., 8(1963), 5-18.
- [15] Takahashi W., A convexity in metric spaces and non-expansive mappings I, Kodai Math. Sem. Rep., 22(1970), 142-149.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec1341da-5b4f-40ac-ac55-75194d156126