Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of measurements of selected thermal, moisture and mechanical properties of thermal insulating plaster, which is one of the alternatives to traditional methods of retrofitting the walls of buildings under conservation protection. An insulating plaster based on perlite was tested. Its thermal conductivity, vapor permeability and compression strength were determined. Images of the tested plaster under the microscope, at a magnification of 10-45x, were also taken. Through computer simulations, the possibility of improving the energy efficiency of an educational building by applying a layer of such plaster on external walls was determined. Changes in the heat loss structure were analyzed, and the obtained results were compared with the effectiveness of reducing heat loss through the walls using a traditional thermal insulation material. It turned out that the thermal conductivity coefficient of the tested plaster obtained by measurement was 0.0877 W/(m∙K), which confirmed the value declared by the manufacturer. Application of thermal insulating plaster with a thickness of 5 cm on the walls of the analyzed building, with other partitions of good thermal quality, reduced its energy demand by over 20%.
Rocznik
Tom
Strony
17--25
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
autor
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
autor
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
autor
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
Bibliografia
- 1. A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions, and the European Investment Bank, Brussels (2018).
- 2. Global Energy & Climate Trends. Report - 2022 Edition - Enerdata: Annual benchmarks and Long-term impacts. Available online: https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html (accessed on 14 April 2023).
- 3. Lis, P., Piesyk, J. (2016). Zużycie energii i efektywność energetyczna budynków–charakterystyka i prognozy. Fizyka Budowli w Teorii i Praktyce, 8 (3), 21-28. (in Polish)
- 4. Stachowicz, A., Fedorczak-Cisak, M. (2007). Niskoenergetyczne budynki: analiza zużycia energii w całym cyklu istnienia budynku. Czasopismo Techniczne. Budownictwo, 104 (1-B), 133-141. (in Polish)
- 5. BPIE.; Staniaszek, D.; Firląg, Sz. (2016). Financing Building Energy Performance Improvement in Poland. Status Report. 2016. Available online: http://bpie.eu/publication/financing-building-energy-performance-improvement-in-poland-status-report/ (accessed on 14 April 2023).
- 6. Owczarek M., Owczarek S. (2015). Efektywność, klasy energetyczne, kosztowe i użytkowe budynków. Materiały konferencyjne II Krajowe sympozjum na temat Priorytety Budownictwa, Eksploatacji i Utrzymania Zasobu Wojskowej Agencji Mieszkaniowej. (in Polish)
- 7. Sadowska, B.; Piotrowska-Woroniak, J.; Woroniak, G.; Sarosiek, W. (2022). Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies, 15, 2886; https://doi.org/10.3390/en15082886.
- 8. Barnaś, K., Jeleński, T., Nowak-Ocłoń, M., Racoń-Leja, K., Radziszewska-Zielina, E., Szewczyk, B., Śladowski, G., Toś, C., Varbanov, P. S. (2023). Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow. Energy, 263, 125774.
- 9. Sadowska, B. (2018, May). Effects of deep thermal modernization and use of renewable energy in public buildings in north-eastern Poland. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia (pp. 26-28).
- 10. Babiński W., Stolarski A., Owczarek M. (2019) Analiza termomodernizacji budynku szkolno-dydaktycznego, Materiały budowlane, 7, 38-44. (in Polish)
- 11. Chmielewski, R., Baryłka, A., Obolewicz, J. (2021) Analysis of design solutions for strengthening the load-bearing structure of a building for further safe use. Journal of Achievements in Materials and Manufacturing Engineering, 104 (1), 5-10. doi: 10.5604/01.3001.0014.8481.
- 12. Ministerstwo Rozwoju i Technologii. Poprawa charakterystyki energetycznej budynków. Poradnik. Warszawa (2022). (in Polish)
- 13. Niedostatkiewicz M. Building modernization located in the conservation protection zone in the aspect of technical conditions. (2022). Safety Engineering of Anthropogenic Objects, 1, pp. 58-74. https://dx.doi.org/10.37105/iboa.133.
- 14. Baryłka, A., Baryłka, J. (2015) Diagnostyka techniczna obiektu budowlanego. Budownictwo i Prawo, 4, pp. 19–22. (in Polish)
- 15. Orlik-Kożdoń, B., Krause, P., Steidl, T. (2015). Rozwiązania materiałowe w dociepleniach od wewnątrz. Fizyka budowli w teorii i praktyce, (4), 29-32. (in Polish)
- 16. Renovation and retrofitting of old buildings in times of climate crisis (2022) edited by Tomasz Jeleński, The Sendzimir Foundation, Warsaw.
- 17. Kurtz-Orecka, K. (2015). Termomodernizacja budynków historycznych. Izolacje, 20(6), 37-45. (in Polish)
- 18. Fedorczak-Cisak, M., Radziszewska-Zielina, E., Białkiewicz, A., Prociak, A., Steidl, T., Tatara, T., Żychowska, M., Muniak, D. P. (2022). Energy efficiency improvement by using hygrothermal diagnostics algorithm for historical religious buildings. Energy, 252, 123971.
- 19. Kuczerowski, M.J. (2022). Analiza badawcza modernizacji budynku szkoleniowego nr 58 wojskowej akademii technicznej (Master’s thesis). Military University of Technology, Faculty of Civil Engineering and Geodesy, Warsaw, Poland. (in Polish)
- 20. Polish Ministry of Infrastructure. Announcement of the Minister of Development and Technology of 15 April 2022 on the announcement of the consolidated text of the Regulation of the Minister of Infrastructure the Technical Conditions That Buildings and Their Location Should Satisfy. J. Laws Repub. Pol. 2022, 1225. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220001225 (accessed on 14 April 2023). (in Polish)
- 21. Polish Ministry of Infrastructure. Regulation of the minister of infrastructure of 27 February 2015 on the methodology for calculating the energy performance of a building or part of a building and energy performance certificates. J. Laws Repub. Pol. 2015, 376. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000376 (accessed on 14 April 2023). (in Polish)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec107f93-4e6a-4299-9e09-994dd82f0ffc