Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mathematical analysis for 3D Williamson nanofluid flow past a bi-directional stretched surface in Darcy-Forchheimer permeable media constitutes the focus of this study. The novelty of the proposed model is augmented by the addition of thermal and solutal stratification with chemical species and variable thermal conductivity. Calculations of the suggested model are conducted via the renowned homotopy analysis method (HAM). The results obtained are validated by comparing them in a limiting form with an already published article. Excellent harmony is achieved in this regard. Graphical structures, depicting impacts of assorted arising parameters versus the profiles involved are also provided. It is noticed that the velocity profile is a dwindling function of the Williamson parameter and Hartmann number. It is also stated that the Cattaneo-Christov heat flux exhibits conventional Fourier and Fick’s laws behavior when both coefficients of thermal and concentration relaxations are zero.
Rocznik
Tom
Strony
327--335
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Department of Computer Science, Bahria University, 44000, Islamabad, Pakistan
- Department of Mechanical Engineering, Sejong University, Seoul 143-747, Korea
autor
- Department of Computer Science, Bahria University, 44000, Islamabad, Pakistan
autor
- Department of Mathematics, MASEP Research Group, University of Sharjah, P.O. Box 27272, Sharjah 61174, UAE
Bibliografia
- [1] J. Fourier and B.J. La, “Théorie analytique de la chaleur”, Mem. Acad. R. Sci. 8, 581‒622 (1829).
- [2] C. Cattaneo, “Sulla conduzione del calore”, Atti Sem. Mat. Fis. Univ. Modena. 3, 83‒101 (1948).
- [3] T. Hayat, M. Ijaz Khan, S.A. Shehzad, M. Imran Khan, and A. Alsaedi, “Numerical simulation of Darcy-Forchheimer flow of third grade liquid with Cattaneo-Christov heat flux model”, Math Method Appl Sci. 41(12), 4352‒4359 (2018).
- [4] M. Khan, “On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet”, Results. Phys. 7, 310‒319 (2017).
- [5] D. Lu, M. Ramzan, M. Mohammad, F. Howari, and J.D. Chung, “A thin film flow of nanofluid comprising carbon nanotubes influenced by Cattaneo-Christov heat flux and Entropy generation”, Coatings, 9(5), 296 (2019).
- [6] M. Ramzan, M. Bilal, and J.D. Chung, “Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo-Christov heat flux”, J. Mol. Liq. 223, 1284‒1290 (2016).
- [7] B. Vasu and A.K. Ray, “Numerical study of Carreau nanofluid flow past vertical plate with the Cattaneo-Christov heat flux model”, Int. J. Numer. Method. H. 29(2), 702‒723 (2019).
- [8] D. Lu, Z. Li, M. Ramzan, A. Shafee, and J. D. Chung, “Unsteady squeezing carbon nanotubes based nano-liquid flow with Cattaneo-Christov heat flux and homogeneous–heterogeneous reactions”, Appl. Nanosci. 9(2), 169‒178 (2019).
- [9] M. Imtiaz, A. Kiran, T. Hayat, and A. Alsaedi, “Axisymmetric flow by a rotating disk with Cattaneo-Christov heat flux”, J. Braz. Soc. Mech. Sci. & Eng. 41(3), 149 (2019).
- [10] D. Lu, M. Mohammad, M. Ramzan, M. Bilal, F. Howari, and M. Suleman, “MHD boundary layer flow of Carreau fluid over a convectively heated bidirectional sheet with non-Fourier heat flux and variable thermal conductivity”, Symmetry. 11(5), 618 (2019).
- [11] S. Shateyi and J. Prakash, “A new numerical approach for MHD laminar boundary layer flow and heat transfer of nanofluids over a moving surface in the presence of thermal radiation”, Bound Value Probl. 2014(1), 2 (2014).
- [12] K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids”, Int J Heat Mass Tran. 46(19), 3639–3653 (2003).
- [13] K.V. Wong and O. De Leon, “Applications of nanofluids: current and future”, Adv Mech Eng. 2, 519659 (2010).
- [14] M. Ramzan, M. Sheikholeslami, M. Saeed, and J.D. Chung, “On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface”, Sci Rep. 9(1), 562 (2019).
- [15] S. Nasir, Z. Shah, S. Islam, E. Bonyah, and T. Gul, “Darcy-Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet”, AIP Adv. 9(1), 015223 (2019).
- [16] G. Rasool, A. Shafiq, C. M. Khalique, and T. Zhang, “Magneto-hydrodynamic Darcy-Forchheimer nanofluid flow over non-linear stretching sheet”, Phys. Scripta.. (2019).
- [17] T. Muhammad, D.C. Lu, B. Mahanthesh, M.R. Eid, M. Ramzan, and A. Dar, “Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes”, Commun. Theor. Phys. 70(3), 361 (2018).
- [18] T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, “An optimal analysis for Darcy-Forchheimer 3D flow of nanofluid with convective condition and homogeneous–heterogeneous reactions”, Phys. Lett. A. 382(39), 2846‒2855 (2018).
- [19] M. Farooq, S. Ahmad, M. Javed, and A. Anjum, “Melting heat transfer in squeezed nanofluid flow through Darcy Forchheimer medium”, J. Heat. Transf. 141(1), 012402 (2019).
- [20] S. Rashidi, S. Akar, M. Bovand, and R. Ellahi, “Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still”, Renew Energ. 115, 400–410 (2018).
- [21] R. Ellahi, A. Zeeshan, N. Shehzad, and S.Z. Alamri, “Structural impact of Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process”, J. Mol. Liq. 264, 607‒615 (2018).
- [22] M. Hassan, M. Marin, R. Ellahi, and S.Z. Alamri, “Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids”, Heat Transf Res. 49(18), 1837–1848 (2018).
- [23] M. Hassan, M. Marin, A. Alsharif, and R. Ellahi, “Convective heat transfer flow of nanofluid in a porous medium over wavy surface”, Phys. Lett. A. 382(38), 2749–2753 (2018).
- [24] N. Shehzad, A. Zeeshan, R. Ellahi, and S. Rashidi, “Modelling study on internal energy loss due to entropy generation for non-darcy poiseuille flow of silver-water nanofluid: an application of purification”, Entropy 20(11), 851 (2018).
- [25] M. Hassan, R. Ellahi, M. M. Bhatti, and A. Zeeshan, “A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge”, Can. J. Phys. 97(3), 277–285 (2018).
- [26] A. Sohail, M. Fatima, R. Ellahi, and K.B. Akram, “A videographic assessment of Ferrofluid during magnetic drug targeting: an application of artificial intelligence in nanomedicine”, J. Mol. Liq. 285, 47‒57 (2019).
- [27] R. Ellahi, “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions” , Appl. Math. Model. 37(3), 1451–1467 (2013).
- [28] M. A. Yousif, H.F. Ismael, T. Abbas, and R. Ellahi, “Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation”, Heat. Transf. Res. 50(7) (2019).
- [29] R. Ellahi, S. M. Sait, N. Shehzad, and N. Mobin, “Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD Power-law nanofluid with Entropy generation”, Symmetry 11(8), 1038 (2019).
- [30] A. Hamid, M. Alghamdi, M. Khan, and A.S. Alshomrani, “An investigation of thermal and solutal stratification effects on mixed convection flow and heat transfer of Williamson nanofluid”, J. Mol. Liq, 284, 307–315 (2019).
- [31] M. Khan, S. Qayyum, T.A. Khan, M.I. Khan, T. Hayat, I. Ullah, and A. Alsaedi, “Optimization of thermal and solutal stratification in simulation of Williamson fluid with entropy generation and activation energy”, Heat. Transf. Res. 50(9( 2019)).
- [32] M. Khan, T .Salahuddin, M.Y. Malik, and F.O. Mallawi, “Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification”; Int. J. Heat. Mass. Tran. 126, 941–948 (2018).
- [33] T. Hayat, M.Z. Kiyani, A. Alsaedi, M.I. Khan, and I. Ahmad, “Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction”, Int. J. Heat. Mass. Trans. 127, 422–429(2018) (2018).
- [34] M. Ramzan, M. Bilal, and J.D. Chung, “Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption”, Int J Mech Sci. 131, 317–324 (2017).
- [35] M. Ramzan, N. Ullah, J.D. Chung, D. Lu, and U. Farooq, “Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction”, Sci Rep. 7(1), 12901 (2017).
- [36] M. Ramzan, M. Bilal, and J.D. Chung, “Radiative flow of Powell-Eyring magneto-nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point”, PloS one. 12(1), e0170790 (2017).
- [37] M. Ramzan, M. Bilal, J.D. Chung, D.C. Lu, and U. Farooq, “Impact of generalized Fourier’s and Fick’s laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions”, Phys Fluids. 29(9), 093102 (2017).
- [38] T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, “Darcy-Forchheimer three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface”, Commun. Theor. Phys. 68(3), 387 (2017).
- [39] H. Zargartalebi, M. Ghalambaz, A. Noghrehabadi, and A. Chamkha, “Stagnation-point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties”, Adv. Powder. Technol. 26(3), 819–829 (2015).
- [40] F.M. Abbasi and S.A. Shehzad, “Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity: Application of Cattaneo-Christov heat flux model”, J. Mol. Liq. 220, 848–854 (2016).
- [41] S. Liao, “Beyond perturbation: Introduction to the Homotopy Analysis method”, Chapman and Hall/CRC (2003).
- [42] P.J. Message, “Perturbation Theory: Techniques and Limitations. From Newton to Chaos: Modern Techniques for Understanding and Coping with Chaos in N-Body Dynamical Systems”, pp. 5–19 (1995).
- [43] G. Adomian, “A review of the decomposition method in applied mathematics”, Electron J Math Anal Appl, 135(2), 501–544 (1988).
- [44] J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch, “Asymptotic approaches in nonlinear dynamics”, New trends and applications (Vol. 69). Springer Science & Business Media (2012).
- [45] J.H. He, “Variational iteration method–a kind of non-linear analytical technique: some examples”, Int. J. Nonlinear. Mech. 34(4), 699–708 (1999).
- [46] A.M. Lyapunov, “The general problem of the stability of motion”, Int. J Control. 55 (3), 531–534 (1992).
- [47] S. Nadeem, S. T. Hussain, and C. Lee, “Flow of a Williamson fluid over a stretching sheet”, Brazilian J. Chem. Eng. 30(3), 619–625 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec0f7790-c88e-4ee0-a41e-e89e3ffdb9b8