PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EU Norsewind – Delivering offshore wind speed data for renewable energy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Symposium on Compressor & Turbine Flow Systems Theory & Application Areas "SYMKOM" (11 ; 20-23.10.2014 ; Łódź, Polska)
Języki publikacji
EN
Abstrakty
EN
Offshore wind is the key area of expansion for most EU states in order to meet renewable energy obligations. However, a lack of good quality offshore wind resource data is inhibiting growth in this area. To address this issue the NORSEWInD project was established in 2008 to develop the methodology for creating a wind atlas from remote sensing satellite data which is available in the public domain. This paper gives an overview of the methodology developed and includes the so-called “NORSEWInD standard” for comparing LIDAR and mast wind data, the technique for estimating the flow distortion measured around offshore platforms by LiDARs using wind tunnel and CFD data and observations of the vertical wind profile shear exponent at the hub height of off shore wind turbines.
Twórcy
  • Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow, UK
autor
  • Oldbaum Services, Stirling FK9 4NF, UK
  • DTU Wind Energy, Technical University of Denmark Frederiksborgvej 399, 4000 Roskilde, Denmark
autor
  • Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow, UK
Bibliografia
  • [1] Wagner R., Antoniou I., Pedersen S.M., Courtney M.S., Jørgensen H.E.: The influence of the wind speed profile on wind turbine performance measurements. Wind Energy 2009, 12, 348-362.
  • [2] Peña A., Hasager C.B., Gryning S., Courtney M., Antoniou I., Mikkelsen T.: Offshore wind profiling using Light Detection and Ranging Measurements. Wind Energy 2009, 12, 105-124.
  • [3] Hahmann A.N., Lange J., Peña A., Hasager C.B.: The NORSEWInD Numerical Wind Atlas for the South Baltic; DTU Wind Energy E-0011 (EN); DTU Wind Energy, Roskilde, Denmark, 2012; p. 53.
  • [4] Smith D.A., Harris M., Coffey A.S., Mikkelsen T., Jorgensen H.E., Mann J., Danielian G.: Wind lidar evaluation at the danish wind test site in hovsore. Wind Energy 2006, 9, 87-93.
  • [5] Kindler D., Oldroyd A., Macaskill A., Finch D.: An eight month test campaign of the Qinetiq ZephIR system: Preliminary results. Meteorol. Z. 2007, 16, 479-489.
  • [6] Antoniou I., Jørgensen H.E., Mikkelsen T., Frandsen S., Barthelmie R., Perstrup C., Hurtig M.: Offshore Wind Profile Measurements from Remote Sensing Instruments. In Proceedings of the European Wind Energy Association Conference & Exhibition in Athens, Athens, Greece, 27 Feb-3 March 2006.
  • [7] NORSEWInD: Available online: http://www.norsewind.eu (accessed on 3 September 2014).
  • [8] Peña A., Mikkelsen T., Gryning S.-E., Hasager C.B., Hahmann A., Badger M., Karagali I., Courtney M.: Offshore Vertical Wind Shear: Final Report on NORSEWInD’s Work Task 3.1; DTU Wind Energy-E-Report-0005(EN); DTU Wind Energy, Roskilde, Denmark, 2012; p. 116.
  • [9] Stickland M., Scanlon T., Fabre S., Oldroyd A., Mikkelsen T.: Measurement and simulation of the flow field around a triangular lattice meteorological mast. Journal of Energy and Power Engineering. 13, 2013.
  • [10] Badger M., Badger J., Nielsen M., Hasager C.B., Peña A.: Wind class sampling of satellite SAR imagery for offshore wind resource mapping. J. Appl. Meteorol. Climatol. 2010, 49, 2474–2491.
  • [11] Berge E., Hasager C.B., Bredesen R.E., Hahmann A., Byrkjedal O., Peña A., Kravik R., Harstveit K., Costa P., Oldroyd A.: NORSEWIND-Mesoscale Model Derived Wind Atlases for the Irish Sea, the North Sea and the Baltic Sea. In European Wind Energy Association Confernce, Vienna, Austria, 4-7 February 2013; pp. 1-6.
  • [12] Hasager C.B., Badger M., Peña A., Larsen X.G., Bingol F.: SAR-Based wind resource statistics in the Baltic sea. Remote Sens. 2011, 3, 117-144.
  • [13] Karagali I., Hoyer J., Hasager C.: SST diurnal variability in the North Sea and the Baltic sea. Remote Sens. Environ. 2012, 121, 159-170.
  • [14] Karagali I., Peña A., Badger M., Hasager C.: Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy 2012, doi: 10.1002/we.1565.
  • [15] Karagali I., Badger M., Hahmann A., Peña A., Hasager C., Sempreviva A.M.: Spatial and temporal variability in winds in the Northern European Seas. Renew. Energy 2013, 57, 200-210.
  • [16] ZephIR©. Available online: http://www.zephirlidar.com (accessed on 3 September 2013).
  • [17] Pitter M., Slinger C., Harris M.: Introduction of Continous-Wave Doppler| Lidar. In Remote Sensing for Wind Energy; Peña A., Hasager C.B., Lange J., Anger J., Badger M., Bingöl F., Bischoff O., Cariou J.-P., Dunne F., Emeis S., et al., Eds., DTU Wind Energy-E-Report-0029(EN); DTU Wind Energy, Roskilde, Denmark, 2013; pp. 72-103. WindCube©. Available online: http://www.leosphere.com (accessed on 3 September 2013).
  • [18] Cariou J.-P.: Pulsed Lidars. In Remote Sensing for Wind Energy; Peña A., Hasager C.B., Lange J., Anger J., Badger M., Bingöl F., Bischoff O., Cariou J.-P., Dunne F., Emeis S., et al., Eds.; DTU Wind Energy-E-Report-0029(EN); DTU Wind Energy, Roskilde, Denmark, 2013, pp. 104-121.
  • [19] Sonnenschein C.M., Horrigan F.A.: Signal-to-Noise relationships for Coaxial Systems that heterodyne backscatter from atmosphere. Appl. Opt. 1971, 10, 1600-1604.
  • [20] Menter F.R., Kuntz M., Langtry R.: Ten Years of Industrial Experience with the SST Turbulence Model. In Turbulence, Heat and Mass Transfer 4; Hanjalic K., Nagano Y., Tummers M., Eds.; Begell House Inc.: New York, NY, USA, 2003; pp. 625-632.
  • [21] Courtney M., Wagner R., Lindelöw P.: Testing and Comparison of Lidars for Profile and Turbulence Measurements in Wind Energy. In IOP Conference Series Earth and Environmental Science; Risø National Laboratory, DTU, Denmark, 2008; pp. U172-U185.
  • [22] Stickland M., Scanlon T., Fabre S.: Computational and Experimental Study on the Effect of Flow Field Distortion on the Accuracy of the Measurements made by Anemometers on the Fino3 Meteorological Mast. In Proceedings of EWEA Offshore: Moving Ahead of the Energy Curve, Amsterdam, The Netherlands, 29 Nov-1 Dec 2011.
  • [23] Bingöl F., Mann J., Foussekis D.: Conically scanning lidar error in complex terrain. Meteorol. Z. (Ger.) 2009, 18, 189-195.
  • [24] Bingöl F., Mann J., Foussekis D.: Lidar Error Estimation with WAsP Engineering. In Proceedings of 14th International Symposium for the Advancement of Boundary Layer Remote Sensing IOP Publishing IOP Conf. Series: Earth and Environmental Science, Risø National Laboratory, DTU, Denmark, 23-25 June 2008, 2009; Volume 1.
  • [25] Bradley S., Mikkelsen T.: LIDAR remote sensing. Int. Sustain. Energy Rev. 2011, 5, 2-7.
  • [26] Bradley S., Perrott Y., Behrens P., Oldroyd A.: Corrections for wind-speed errors from sodar and lidar in complex terrain. Bound. Layer Meteorol. 2012, 143, 37-48.
  • [27] Mann J., Ott S., Jørgensen B.H., Frank H.P.: WAsP Engineering 2000; Technical Report Risø-R-1356(EN); Risø National Laboratory for Sustainable Energy, Technical University of Denmark: Risø DTU, Roskilde, Denmark, 2002; Volume R–1356(EN), p. 101.
  • [28] Mortensen N.G., Heathfield D.N., Myllerup L., Landberg L., Rathmann O.: Getting Started with WAsP 9; Report Risø-I-2571(EN); Risø National Laboratory for Sustainable Energy, Technical University of Denmark: Risø DTU, Roskilde, Denmark, 2007; p. 72.
  • [29] Peña A., Hahmann A., Hasager C.B., Bingöl F., Karagali I., Badger J., Badger M., Clausen N.: South Baltic Wind Atlas; Report Risø-R-1775(EN); Risø National Laboratory for Sustainable Energy, Technical University of Denmark: DTU Wind Energy, Roskilde, Denmark, 2011, p. 66.
  • [30] Draxl C., Hahmann A.N., Peña A., Giebel G.: Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy 2012, doi: 10.1002/we.1555.
  • [31] Emeis S.: Wind Energy Meteorology-Atmospheric Physics for Wind Power Generation. In Series: Green Energy and Technology; Springer: Heidelberg, Germany, 2012; p. 14-196.
  • [32] Cañadillas B., Neumann T., Raasch S.: Getting a Better Understanding of the Offshore Marine Boundary Layer: Comparison between Large Eddy Simulation and Offshore Measurement Data with Focus on Wind Energy Application. In Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, NC, USA, 23-27 May 2010.
  • [33] Zoumakis N.M.: The dependence of the power-law exponent on surface roughness and stability in a neutrally and stably stratified surface boundary layer. Atmósfera 1993, 6, 79–83.
  • [34] Westerhellweg A., Cañadillas B., Beeken A., Neumann T.: One Year of Lidar Measurements at FINO1-Platform: Comparison and Verification to Met-Mast Data. In Proceedings of 10th German Wind Energy Conference DEWEK 2010, Bremen, Germany, 17-18 November 2010.
  • [35] Muñoz-Esparza D., Canadillas B., Neumann T., van Beeck J.: Turbulent fluxes, stability and shear in the offshore environment: Mesoscale modelling and field observations at FINO1. J. Renew. Sustain. Energy 2012, 4, 063136:1-063136:16.
  • [36] Lang S., McKeogh E.: LIDAR and SODAR measurements of wind speed and direction in upland terrain for wind energy purposes. Remote Sens. 2011, 3, 1871-1901.
  • [37] Takeyama Y., Ohsawa T., Yamashita T., Kozai K., Muto Y., Baba Y., Kawaguchi K.: Estimation of offshore wind resources in coastal waters off Shirahama using ENVISAT ASAR images. Remote Sens. 2013, 5, 283-2897.
  • [38] Takeyama Y., Ohsawa T., Kozai K., Hasager C.B., Badger M.: Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar. Wind Energy 2012, doi: 10.1002/we.1526.
  • [39] Bay Hasager C., Stein D., Courtney M., Peña A., Mikkelsen T., Stickland M., Oldroyd A.: Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management. Remote Sensing 2013, Vol. (5).
  • [40] Bay Hasager C. et al.: SAR – Based wind resource statistics in the Baltic Sea. Remote sensing 2011, 3. 117-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebfc8fdd-216c-4444-940e-476cc4a9ab0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.