Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study a new class of partially coherent array beams with a non-uniform polarization, named radially polarized Gaussian Schell-model array (RPGSMA) beams and analyze the reliability conditions for the array beams based on the unified theory of coherence and polarization, Moreover, the statistical properties of such beam propagating in free space are investigated in detail. It is found that, the propagation properties of the RPGSMA beams are closely related to initial beam parameters. With an appropriate choice of the beam parameters, the average intensity will evolve into optical lattice patterns, and the degree of coherence (DOC) from the lattice distribution on the original plane evolves into a Gaussian profile in the far field, and the degree of polarization (DOP) appears a periodical grid-like distribution on propagation. These results may be beneficial to particle trapping and free-space optical communications.
Czasopismo
Rocznik
Tom
Strony
307--319
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- School of Intelligent Manufacturing and Energy Engineering, Jiang-Xi University of Engineering Xinyu, 338000, Jiangxi, China
autor
- College of Science, Jiang-Xi University of Engineering Xinyu, 338000, Jiangxi, China
Bibliografia
- [1] ANDERSON B.P., GUSTAVSON T.L., KASEVICH M.A., Atom trapping in nondissipative optical lattices, Physical Review A 53(6), 1996: R3727(R). https://doi.org/10.1103/PhysRevA.53.R3727
- [2] OSTROVSKAYA E.A., KIVSHAR Y.S., Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices, Optics Express 12(1), 2004: 19-29. https://doi.org/10.1364/OPEX.12.000019
- [3] MACDONALD M.P., SPALDING G.C., DHOLAKIA K., Microfluidic sorting in an optical lattice, Nature 426, 2003: 421-424. https://doi.org/10.1038/nature02144
- [4] YANG X.L., CAI L.Z., LIU Q., LIU H.-K., Theoretical bandgap modeling of two-dimensional square photonic crystals fabricated by the interference of three noncoplanar laser beams, Journal of the Optical Society of America B 21(9), 2004: 1699-1702. https://doi.org/10.1364/JOSAB.21.001699
- [5] MEI Z., ZHAO D., KOROTKVA O., MAO Y., Gaussian Schell-model arrays, Optics Letters 40(23), 2015: 5662-5665. https://doi.org/10.1364/OL.40.005662
- [6] EYYUBOĞLU H.T., BAYKAL Y., CAI Y., Scintillation of laser array beams, Applied Physics B 91, 2008: 265–271. https://doi.org/10.1007/s00340-008-2966-x
- [7] JI X., PU Z., Angular spread of Gaussian Schell-model array beams propagating through atmospheric turbulence, Applied Physics B 93, 2008: 915–923. https://doi.org/10.1007/s00340-008-3256-3
- [8] ZHOU P., MA Y.X., WANG X.L., MA H.T., XU X.J., LIU Z.J., Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere, Applied Optics 48(28), 2009: 5251-5258. https://doi.org/10.1364/AO.48.005251
- [9] ZHOU P., WANG X.L., MA Y.X., MA H.T., XU X.J., LIU Z.J., Propagation of partially coherent partially phase-locked laser array in turbulent atmosphere, Optics Communications 283(6), 2010: 1071-1074. https://doi.org/10.1016/j.optcom.2009.10.118
- [10] ZHOU G.Q., Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere, Optics Express 19(24), 2011: 24699-24711. https://doi.org/10.1364/OE.19.024699
- [11] HUANG Y.P., HUANG P., WANG F.H., ZHAO G.P., ZENG A.P., The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite–Gaussian linear array beams, Optics Communications 336, 2015: 146-152. https://doi.org/10.1016/j.optcom.2014.09.055
- [12] WANG Y.K., MA H.X., ZHU L.H., TAI Y.P., LI X.Z., Orientation-selective elliptic optical vortex array, Applied Physics Letters 116(1), 2020: 011101. https://doi.org/10.1063/1.5128040
- [13] SHIRAI T., WOLF E., Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization, Optics Communications 272(2), 2007: 289-292. https://doi.org/10.1016/j.optcom.2006.11.041
- [14] XU J., ZHAO D., Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence, Optics & Laser Technology 57, 2014: 189-193. https://doi.org/10.1016/j.optlastec.2013.10.019
- [15] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5-6), 2003: 263-267. https://doi.org/10.1016/S0375-9601(03)00684-4
- [16] DU X., ZHAO D., Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere, Optics Express 17(6), 2009: 4257-4262. https://doi.org/10.1364/OE.17.004257
- [17] ZHOU Y., ZHAO D., Statistical properties of electromagnetic twisted Gaussian Schell-model array beams during propagation, Optics Express 27(14), 2019: 19624-19632. https://doi.org/10.1364/OE.27.019624
- [18] ZHAN Q., Cylindrical vector beams: from mathematical concepts to applications, Advances in Optics and Photonics 1(1), 2009: 1-57. https://doi.org/10.1364/AOP.1.000001
- [19] FU W., ZHANG H., Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean, Optics Communications 304, 2013: 11-18. https://doi.org/10.1016/j.optcom.2013.03.029
- [20] WU G., WANG F., CAI Y., Coherence and polarization properties of a radially polarized beam with variable spatial coherence, Optics Express 20(27), 2012: 28301–28318. https://doi.org/10.1364/OE.20.028301
- [21] LIU D., WANG Y., ZHONG H., Average intensity of radial phased-locked partially coherent standard Hermite-Gaussian beam in oceanic turbulence, Optics & Laser Technology 106, 2018: 495–505. https://doi.org/10.1016/j.optlastec.2018.05.015
- [22] MEI Z., KOROTKOVA O., Random sources for rotating spectral densities, Optics Letters 42(2), 2017: 255-258. https://doi.org/10.1364/OL.42.000255
- [23] MEI Z., KOROTKOVA O., Twisted EM beams with structured correlations, Optics Letters 43(16), 2018: 3905-3908. https://doi.org/10.1364/OL.43.003905
- [24] GORI F., RAMÍREZ-SÁNCHEZ V., SANTARSIERO M., SHIRAI T., On genuine cross-spectral density matrices, Journal of Optics A: Pure and Applied Optics 11(8), 2009: 085706. https://doi.org/10.1088/1464-4258/11/8/085706
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebf02972-6b14-436f-be16-10147709b136