Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dimethylaminoethyl azide (DMAZ) is a good replacement for the hydrazine group in the space industry. However, it has a relatively long ignition delay time with the liquid oxidizer, white fuming nitric acid (WFNA), and is nonhypergolic with inhibited red fuming nitric acid (IRFNA). In this article, the ignition delay times of DMAZ-WFNA and DMAZ-IRFNA bi-propellants were reduced by the addition of some inorganic nitrate salts, such as NH4NO3, KNO3, NaNO3, AgNO3 and LiNO3, to the liquid oxidizers. The results showed that WFNA containing 0.1 wt.%, 0.3 wt.% and 0.5 wt.% of LiNO3 reduced the ignition delay time of DMAZ-WFNA from 88 ms to 18 ms, 14 ms and 8 ms, respectively. The same percentages of LiNO3 caused the nonhypergolic DMAZ-IRFNA bi-propellant to have ignition delay times of 42 ms, 34 ms and 22 ms, respectively. Moreover, calculations indicated that the addition of LiNO3 to both oxidizers did not have a significant affect on the specific impulse of the bi-propellants. Consequently LiNO3 could be an appropriate additive for the reduction of the ignition delay times of DMAZ-WFNA and DMAZ-IRFNA bi-propellants.
Rocznik
Tom
Strony
162--174
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Faculty of Chemical Engineering, Malek Ashtar University of Technology, P.O. Box: 16765/3454, Tehran, Iran
autor
- Faculty of Chemical Engineering, Malek Ashtar University of Technology, P.O. Box: 16765/3454, Tehran, Iran
Bibliografia
- [1] Schmidt, E. W. Hydrazine and Its Derivatives. John Wiley & Sons, New York 2001; ISBN 978-0-471-41553-4.
- [2] Sutton, G. P.; Biblarz, P. Rocket Propulsion Elements. John Wiley & Sons, New York 2010; ISBN 978-0-470-08024-5.
- [3] Agrawal, J. P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH, Weinheim 2010; ISBN 978-3-527-32610-5.
- [4] Edwards, T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003. J. Propul. Power 2003, 19(6): 1089-1107.
- [5] Mellor, B. A Preliminary Technical Review of DMAZ: A Low-Toxicity Hypergolic Fuel. Int. Conf. Green Propellants Space Propul., Proc. Conf., 2nd, Cagliari, Sardinia, Italy 2004, 22.1-22.6.
- [6] Meyers, C. J.; Kosowski, B. M. Dimethylamino Ethylazide – A Replacement of Hydrazine Derivatives in Hypergolic Fuel Applications. Int. Annu. Conf. ICT, Fraunhofer Institute, Karlsruhe, Germany 2003, 1-4.
- [7] Pakdehi, S. G.; Ajdari, S.; Hashemi, A.; Keshavarz, M. H. Performance Evaluation of Liquid Fuel 2-Dimethyl Amino Ethyl Azide (DMAZ) with Liquid Oxidizers. J. Energ. Mater. 2015, 33(1): 17-23.
- [8] Zhang, Y.; Gao, H.; Joo, Y. H.; Shreeve, J. M. Ionic Liquids as Hypergolic Fuels. Angew. Chem. Int. Ed. 2011, 50(41): 9554-9562.
- [9] Da Silva, G.; Iha, K. Hypergolic Systems: A Review in Patents. Aerosp. Technol. Manage. 2012, 4(4): 407-412.
- [10] Davis, S. M.; Yilmaz, N. Advances in Hypergolic Propellants: Ignition, Hydrazine, and Hydrogen Peroxide Research. Adv. Aerosp. Eng. 2014, 2014: 1-9.
- [11] Lewis, B.; Pease, R. N.; Taylor, H. S. Combustion Processes. Princeton University Press, New York 2015; ISBN 9781400877027.
- [12] Alfano, A.; Mills, J.; Vaghjiani, G. Highly Accurate Ignition Delay Apparatus for Hypergolic Fuel Research. Rev. Sci. Instrum. 2006, 77(4): 045109.1-045109.5.
- [13] Hallit, R. E. A.; Bauerle, G. Hypergolic Azide Fuels with Hydrogen Peroxide. Patent US 6949152 B2, 2005.
- [14] Mellor, B.; Ford, M. Investigation of Ignition Delay: Novel beta-Substituted Ethylazide Derivatives as Potential New Liquid Propellant Fuels. AIAA/ASME/SAE/ASEE Joint Propul. Conf. Exhibit, 42nd, Sacramento, USA 2006, 1-8.
- [15] Durgapal, U. C.; Dutta, P. K.; Pant, G. C.; Ingalgaonkar, M. B.; Oka, V. Y.; Umap, B. B. Studies on Hypergolicity of Several Liquid Fuels with Fuming Nitric Acids as Oxidizers. Propellants Explos. Pyrotech. 1987, 12(5): 149-153.
- [16] Dambach, E. M.; Cho, K. Y.; Pourpoint, T. L.; Heister, S. D. Ignition of Advanced Hypergolic Propellants. AIAA/ASME/SAE/ASEE Joint Propul. Conf. Exhibit, 46th, Nashville, USA 2010, 1-12.
- [17] Pakdehi, S. G.; Azhdari, S.; Hashemi, A. A.; Seifollahzadeh, A. Measurement Methods and Effective Parameter on Ignition Delay Time in Liquid Propellants. J. Energ. Mater. 2012, 8(1): 39-51.
- [18] Burton, J. M.; Tex, M. G. Ignition Delay Reducing Agents for Hypergolic Rocket Fuels. Patent US 2993334, 1961.
- [19] Jain, S. R.; Rajendran, G. Chemical Aspects of the Hypergolic Preignition Reactions of Some Hybrid Hypergols. Combust. Flame 1987, 67(3): 207-215.
- [20] Jain, S. R. Self Igniting Fuel-Oxidizer Systems and Hybrid Rockets. J. Sci. Indust. Res. 2003, 62: 293-310.
- [21] Jain, S. R.; Krishna, P. M. M.; Pai Verneker, V. R. Hypergolic Ignition of Various Hydrazones with Nitric Acid. J. Spacecr. Rockets 1979, 16(2): 69-73.
- [22] Manahan, S. E. Water Chemistry: Green Science and Technology of Nature’s Most Renewable Resource. CRC Press, New York 2011; ISBN 9781439830680.
- [23] Elzaki, B. I.; Zhang, Y. J. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review. Materials 2016, 9(7): 502-509.
- [24] Miles, M. H. Rechargeable Lithium-Air and Other Lithium-Based Batteries Using Molten Nitrate. Patent US 8795868 B1, 2014.
- [25] Pakdehi, S. G.; Rouhandeh, H. Sub-Atmospheric Distillation for Water (1) + Dimethyl Amino Ethyl Azide (2) Mixture. Iran. J. Chem. Chem. Eng. 2016, 35(2): 107-111.
- [26] Gordon, S.; McBride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis. NASA Report No. E-8017, 1994.
- [27] Wang, S. Q.; Thynell, S. T. Experimental Investigation of Pressure Effect on Ignition Delay of Monomethylhydrazine, 1,1‐Dimethylhydrazine, Tetramethylethylenediamine and 2‐Dimethylaminoethylazide with Nitric Acid. U. S. National Combust. Meeting, 8th, Utah, USA 2013, 1-6.
- [28] Chaturvedi, S.; Pragnesh, N. D. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31(1): 1-26.
- [29] Ravanbod, M.; Pouretedal, H. R. Catalytic Effect of Fe2O3, Mn2O3, and TiO2 Nanoparticles on Thermal Decomposition of Potassium Nitrate. J. Therm. Anal. Calorim. 2016, 124(2): 1091-1098.
- [30] McManis, G. E.; Miles, M. H.; Fletcher, A. N. Performance and Discharge Characteristics of Ca/LiCl, LiNO3/LiNO3, AgNO3/Ni Thermal Battery Cells. J. Electrochem. Soc. 1984, 131(2): 283-286.
- [31] Communication to the Editor: The Thermal Decomposition of NaNO3. J. Phys. Chem. 1956, 60(2): 256-256.
- [32] Michalski, G.; Savarino, J.; Bo1hlke, J. K.; Thiemens, M. Determination of the Total Oxygen Isotopic Composition of Nitrate and the Calibration of a Δ17O Nitrate Reference Material. Anal. Chem. 2002, 74: 4989-4993.
- [33] Urbanski, T. Chemistry and Technology of Explosives. Pergamon Press, New York 1964; ISBN 0080102387.
- [34] Domenico, P. A.; Schwartz, F. W. Physical and Chemical Hydrogeology. 2nd ed., Wiley, New York 1990; ISBN 978-0-471-59762-9.
- [35] Malfoy, C. Influence du Cation Echangeable et des Hétérogénéités Minérales Sur le Comportement Rhéologique de Suspensions de Smectite. PhD Thesis, Poitiers University, France 2003.
- [36] Birkholz, M. Modeling the Shape of Ions in Pyrite-Type Crystals. Crystals 2014, 4(3): 390-403.
- [37] Mann, J. B. Atomic Structure Calculations II. Hartree-Fock Wave Functions and Radial Expectation Values: Hydrogen to Lawrencium. LA-3691, Los Alamos Scientific Laboratory, USA 1968.
- [38] Holleman, A. F.; Wiberg, E. Inorganic Chemistry. Academic Press, San Diego 2001; ISBN 0-12-352651-5.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebed9ad5-231d-4690-b4d3-8e3b1df08e64