PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Assessment of Mould Growth Risk in Lightweight Insulating Assemblies Via Analysis of Hygrothermal Data and In Situ Evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to assess the sustainability of buildings with different types of insulating assemblies in the Latvian climate, a long-term test building monitoring experiment has been underway since 2013. There are a total of five test buildings on site with roughly six years' worth of accumulated temperature and humidity readings in the key parts of assemblies. This study is meant to quantify the mould presence in building walls, floor and ceiling by performing laboratory tests, assessing the number of colony-forming units, and comparing the results with mould risk predictions due to the isopleth model developed by Sedlbauer, using both the hygrothermal data derived from the sensors within buildings and the output of numerical simulations in WUFI Pro 6.3, a commercial software package. The analysis indicated good agreement between the lab tests and mould risk assessment using the data sets from the sensors, validating the applicability of the Sedlbauer model to the Latvian climate, while the comparisons between the numerically obtained forecasts and experimental data revealed dissimilarities that are largely due to imprecisions in material models and initial conditions.
Słowa kluczowe
Rocznik
Strony
256--265
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • University of Latvia, Plant Biology Laboratory, Kandavas street 2, Riga, Latvia
  • University of Latvia, Laboratory for Mathematical Modelling of Technological and Environmental Processes, Jelgavas street 3, Riga, Latvia
  • University of Latvia, Laboratory for Mathematical Modelling of Technological and Environmental Processes, Jelgavas street 3, Riga, Latvia
Bibliografia
  • 1. Alev U., Uus A., Teder M., Miljan M.J., Kalamees T. 2014. Air leakage and hygrothermal performance of an internal insulated log house. The 10th Nordic Symposium on Building Physics.Lund, Sweden, 55–62
  • 2. Apine I., Orola L., Jakovics A. 2015. Effect of building envelope materials on indoor air quality in low energy test houses. International Journal of Environmental Science and Development, 6(12), 952–957.
  • 3. Asadi E., da Silva M.G., Antunes C.H., Dias L. 2012. Multi-objective optimization for building retrofit strategies: a model and an application. Energy and Buildings, 44, 81–87
  • 4. Boussaba L., Makhlouf S., Foufa A., Lefebvre G., Royon L. 2019. Vegetable fat: A low-cost bio-based phase change material for thermal energy storage in buildings. Journal of Building Engineering, 21, 222–229.
  • 5. Czopka P. 2018. Sustainable materials in ecological buildings. Economic and Environmental Studies, 18(45), 93–102.
  • 6. de Mello L.A., Moura L.M., Mendes N. 2019. A model for assessment of heat and moisture transfer through hollow porous buildings elements. Case Studies in Thermal Engineering, 14, 100446., 13 p.
  • 7. Dimdiņa I., Jakovičs A., Gendelis S., Kļaviņš J. 2013. Testing of energy-efficient building envelope materials in natural conditions. Proc. Int. Conf. on World Sustainable Energy Days, Wels, Austria, 1–5.
  • 8. Dobbins A., Nerini F.F., Deane P., Pye S. 2019. Strengthening the EU response to energy poverty. Nature Energy, 4(1), 2–5.
  • 9. Fedorik F., Haapala A. 2018. Numerical estimation of mould growth on common single-family house building envelopes in boreal conditions. European Journal of Environmental and Civil Engineering, 22(10), 1196–1211.
  • 10. Gradeci K., Berardi U., Time B., Köhler J. 2018. Evaluating highly insulated walls to withstand biodeterioration: A probabilistic-based methodology. Energy and Buildings, 177, 112–124.
  • 11. Gradeci K., Labonnote N., Time B., Köhler J. 2017. Mould growth criteria and design avoidance approaches in wood-based materials – a systematic review. Construction and building materials, 150, 77–88.
  • 12. Gullbrekken L., Geving S., Time B., Andresen I. 2015. Moisture conditions in passive house wall constructions. Energy Procedia, 78, 219–224.
  • 13. Hägerstedt S.O., Arfvidsson J. 2010. Comparison of field measurements and calculations of relative humidity and temperature in wood framed walls. Proc. 15th International Meeting of Thermophysical Society, Valtice, Czech Republic, 93–101.
  • 14. Hess-Kosa K. 2010. Indoor air quality: Sampling methodologies, CRC Press, Florida.
  • 15. Jakovich A., Gendelis S., Ozolins A., Sakipova S.E. 2014. Energy efficiency and sustainability of low energy houses in Latvian climate conditions. Proc. Int. Conf. Energy, Environment, Development and Economics, Santorini, Greece, 109–114.
  • 16. Johansson P.; Ekstrand-Tobin A.; Svensson T., Bok G. 2012. Laboratory study to determine the critical moisture level for mould growth on building materials. International Biodeterioration and Biodegradation, 73, 23–32.
  • 17. Krus M., Kilian R., Sedlbauer K. 2007. Mould growth prediction by computational simulation on historic buildings. In: Padfield T., Borchersen K. (eds), In Museum Microclimates. Copenhagen, Denmark, The National Museum of Denmark.
  • 18. Künzel H.M. 1995. Simultaneous heat and moisture transport in building components. One-and twodimensional calculation using simple parameters. Ph.D. Thesis, Frauhofer IRB-Verlag Stuttgart.
  • 19. Künzel H.M., Zirkelbach D., Schafaczek B. 2012. Modelling the Effect of Air Leakage in Hygrothermal Envelope Simulation National Institute of Building Science. Proc. BEST3 Conference Atlanta, 13 p.
  • 20. Laborel-Préneron A., Ouédraogo K., Simons A., Labat M., Bertron A., Magniont C. et al. 2018. Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment, 142, 11–21.
  • 21. Latif E., Ciupala M.A., Wijeyesekera D.C. 2014. The comparative in situ hygrothermal performance of Hemp and Stone Wool insulations in vapour open timber frame wall panels. Construction and Building Materials, 73, 205–213.
  • 22. Liobikiene G., Mindaugas B. 2017. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renewable Energy, 106, 298–309.
  • 23. Mlakar J., Štrancar J. 2013. Temperature and humidity profiles in passive-house building blocks. Building and Environment, 60, 185–193.
  • 24. Mundt-Petersen O., Harderup L.E., Arfvidsson J. 2013. Important factors affecting the risk of mold growth in well – Insulated wood frame walls in northern European climates. Proc. of the Thermal Performance of the Exterior Envelopes of Whole Buildings XII, 13 p.
  • 25. Mundt-Petersen S.O., Harderup L. E. 2015. Predicting hygrothermal performance in cold roofs using a 1D transient heat and moisture calculation tool. Building and Environment, 90, 215–231.
  • 26. Mundt-Petersen S.O., Harderup L.E. 2013. Validation of a one-dimensional transient heat and moisture calculation tool under real conditions. Proc. of the Thermal Performance of the Exterior Envelopes of Whole Buildings XII-International Conference Florida USA, 12 p.
  • 27. Ozolinsh A., Jakovich A. 2013. Risks of condensate formation and mould growth in buildings under Latvian climate conditions. Latvian Journal of Physics and Technical Sciences, 5, 1–11.
  • 28. Pacheco-Torgal F. 2014. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51, 151–62.
  • 29. Pasanen A.L, Rautiala S., Kasanen J.P., Raunio P., Rantamaki J., Kalliokoski P. 2000. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials. Indoor Air, 11(2), 111–120.
  • 30. Santamouris M. 2016. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61–94.
  • 31. Sinka M., Bajare D., Gendelis S., Jakovics A. 2018. In-situ measurements of hemp-lime insulation materials for energy efficiency improvement. Energy Procedia, 147, 242–248.
  • 32. Vereecken E., Roels S. 2012. Review of mould prediction models and their influence on mould risk evaluation. Building and Environment, 51, 296–310.
  • 33. Vinha J., Salminen M., Salminen K., Kalamees T., Kurnitski J., Kiviste M. 2018. Internal moisture excess of residential buildings in Finland. Journal of Building Physics, 42(3), 239–258.
  • 34. Zirkelbach D., Tanaka E. 2016. Local Climate Models for Hygrothermal Building Component Simulations. Proc. of the CESBP Central European Symposium on Building Physics and BauSIM, 149–155.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebe31ff6-d3b1-4730-9f2d-0e7e3571ed6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.