PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-mechanical bending analysis of a sandwich cylindrical panel with an auxetic honeycomb core and GNP-reinforced face sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present research, the static bending analysis of a three-layer sandwich cylindrical panel with a re-entrant auxetic honeycomb core and polymeric face sheets reinforced with graphene nanoplatelets (GNPs) resting on an elastic foundation in a thermal environment is investigated. The mechanical properties of the nanocomposite GNP-reinforced face sheets are calculated using the Halpin–Tsai model along with the rule of mixture. The heat conduction equation is solved in the thickness direction to provide the exact profile of the temperature distribution. The panel is modeled based on the third-order shear deformation (TSDT), the elastic foundation is modeled according to the Pasternak foundation model, and the governing equations and boundary conditions are derived via the minimum potential energy principle. The differential quadrature method (DQM) is employed to solve the governing equations under various boundary conditions in longitudinal and circumferential directions. The convergence and accuracy of the modeling are confirmed and influences of different parameters on the deflection and stress distribution are studied including the inclined angle of the re-entrant cells, thermal environment, mass fraction and distribution patterns of the GNPs, the thickness of core-to-thickness of panel ratio, and the boundary conditions.
Rocznik
Strony
art. no. e1, 2025
Opis fizyczny
Bibliogr. 68 poz., rys., wykr.
Twórcy
autor
  • Present Address: Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran
  • Present Address: Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran
  • Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran
Bibliografia
  • 1. Ninh DG, Ha NH, Long NT, Tan NC, Tien ND, Dao DV. Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core. Thin-Walled Struct. 2023;182: 110161.
  • 2. Gia-Phi B, Van-Hieu D, Sedighi HM, Sofiyev AH. Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech. 2022;233(6):2249–70.
  • 3. Smardzewski J, Maslej M, Wojciechowski KW. Compression and low velocity impact response of wood-based sandwich panels with auxetic lattice core. Eur J Wood Wood Prod. 2021;79:797–810.
  • 4. Usta F, Türkmen HS, Scarpa F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Struct. 2021;163: 107738.
  • 5. Van Quyen N, Van Thanh N, Quan TQ, Duc ND. Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct. 2021;162: 107571.
  • 6. Gupta A, Pradyumna S. Nonlinear dynamic analysis of sandwich shell panels with auxetic honeycomb core and curvilinear fibre reinforced facesheets. Eur J Mech-A/Solids. 2022;95: 104640.
  • 7. Karimiasl M, Alibeigloo A. Nonlinear free and forced vibration analysis of sandwich cylindrical panel with auxetic core and GPLRC facing sheets in hygrothermal environment. Thin-Walled Struct. 2022;175: 109164.
  • 8. Tran H-Q, Vu V-T, Nguyen V-L, Tran M-T. Free vibration and nonlinear dynamic response of sandwich plates with auxetic hon-eycomb core and piezoelectric face sheets. Thin-Walled Struct.2023;191: 111141.
  • 9. Amirabadi H, Darakhsh A, Sarafraz M, Afshari H. Vibration characteristics of a cylindrical sandwich shell with an FG aux-etic honeycomb core and nanocomposite face layers subjected tosupersonic fluid flow. Noise Vib Worldw. 2024. https://doi.org/10.1177/09574565241252994.
  • 10. Amirabadi H, Mottaghi A, Sarafraz M, Afshari H. Free vibrational behavior of a conical sandwich shell with a functionally gradedauxetic honeycomb core. J Vib Control. 2024. https://doi.org/10.1177/10775463241240215.
  • 11. Biglari H, Teymouri H, Foroutan M. Application of auxetic coreto improve dynamic response of sandwich panels under low-velocity impact. Arab J Sci Eng. 2024. https://doi.org/10.1007/s13369-024-08817-w.
  • 12. Ebrahimi F, Sepahvand M. Wave propagation analysis of cylindrical sandwich shell with auxetic core utilizing first-order shearde formable theory (FSDT). Mech Based Des Struct Mach.2024;52(3):1705–29.
  • 13. Jahangiri S, Ghorbanpour Arani A, Khoddami Maraghi Z. Dynamics of a rotating ring-stiffened sandwich conical shell with an aux-etic honeycomb core. Appl Math Mech. 2024;45(6):963–82.
  • 14. Kumar M, Rathore SS, Kar VR, Chandravanshi ML. Non-linear thermoelastic vibration and optimum frequency prediction of sandwich composite corrugated panels with honeycomb auxeticcore. Polym Compos. 2024;45(1):581–604.
  • 15. Li P, Wang K, Wang B. Effects of unit cell parameters on the thermal shock resistance of auxetic honeycomb sandwich structures: combining discrete and continuum model. Mech Mater. 2024.https://doi.org/10.1016/j.mechmat.2024.105054.
  • 16. Liu J, He X, Liu Z, Cao X, Yu S, Huang W. The fluid-structure interaction response of composite auxetic re-entrant honeycomb structures to underwater impact. Thin-Walled Struct. 2024;196:111465.
  • 17. Namazinia N, Alibeigloo A, Karimiasl M. Free vibration andstatic analysis of sandwich composite plate with auxetic core and GPLRC facing sheets in hygrothermal environment. Forces Mech.2024;15: 100264.
  • 18. Quan TQ, Anh VM, Duc ND. Natural frequency analysis of sand-wich plate with auxetic honeycomb core and CNTRC face sheetsusing analytical approach and artificial neural network. Aerosp Sci Technol. 2024;144: 108806.
  • 19. Thang PT, Kim H, Kim C, Jang H, Kim T, Kim J. Free vibration analysis of barrel-shaped sandwich shells with auxetic honey-comb core using modified thick shell theory. Aerosp Sci Technol.2024;145: 108861.
  • 20. Xiao P, Bin L, Vescovini R, Zheng S. Optimal design of com-posite sandwich panel with auxetic reentrant honeycomb using asymptotic equivalent model and PSO algorithm. Compos Struct.2024;328: 117761.
  • 21. Yolcu DA, Baba BO. Experimental investigation on impact behavior of curved sandwich composites with chiral auxetic core. Compos Struct. 2024;329: 117749.
  • 22. He X, Xiong Z, Lei C, Shen Z, Ni A, Xie Y, Liu C. Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching. Carbon. 2023;213:118200. https://doi.org/10.1016/j.carbon.2023.118200.
  • 23. Tang H, Li Y, Zhu Z, Zhan Y, Li Y, Li K, Wang P, Zhong F, Feng W, Yang X. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. Appl Polym Sci. 2024;141(24):e55502.https://doi.org/10.1002/app.55502.
  • 24. Zhang G, Li W, Yu M, et al. Electric-field-driven printed3D Highly ordered microstructure with cell feature size pro-motes the maturation of engineered cardiac tissues. Adv Sci.2023;10(11):2206264. https://doi.org/10.1002/advs.202206264.
  • 25. Wang K, Liu Z, Wu M, Wang C, Shen W, Shao J. Experimental study of mechanical properties of hot dry granite under thermal-mechanical couplings. Geothermics. 2024;119:102974. https://doi.org/10.1016/j.geothermics.2024.102974.
  • 26. Liu J, Liu T, Su C, Zhou S. Operation analysis and its performance optimizations of the spray dispersion desulfurization tower for the industrial coal-fired boiler. Case Stud Therm Eng.2023;49:103210. https://doi.org/10.1016/j.csite.2023.103210.
  • 27. Hong J, Gui L, Cao J. Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor. IEEE Trans Energy Convers. 2023;38(3):1893–902.https://doi.org/10.1109/TEC.2023.3241082.
  • 28. Chen D, Zhao T, Xu S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans Power Electron. 2022;37(10):12763–73. https://doi.org/10.1109/TPEL.2022.3176377.
  • 29. Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, ZhangX, Liu C, Qu X. Programmable electro-assembly of collagen: constructing porous janus films with customized dual signals for immunomodulation and tissue regeneration in periodontitis treatment. Adv Sci. 2024;11(13):2305756. https://doi.org/10.1002/advs.202305756.
  • 30. Meng S, Meng F, Chi H, Chen H, Pang A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J Frankl Inst.2023;360(16):11397–413. https:// doi. org/ 10. 1016/j. jfran klin.2023.08.037.
  • 31. Chen D, Zhao T, Han L, Feng Z. Single-stage multi-input buck type high-frequency link’s inverters with series and simultaneous power supply. IEEE Trans Power Electron. 2022;37(6):7411–21.https://doi.org/10.1109/TPEL.2021.3139646.
  • 32. Cao J, Du J, Zhang H, He H, Bao C, Liu Y. Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates. Constr Build Mater. 2024;433: 136608. https://doi. org/10.1016/j.conbuildmat.2024.136608.
  • 33. Gao Q, Ding Z, Liao W. Effective elastic properties of irregular auxetic structures. Compos Struct. 2022;287: 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  • 34. Shen Z, Dong R, Li J, Su Y, Long X. Determination of gradient residual stress for elastoplastic materials by nanoindentation. J Manuf Process. 2024;109:359–66. https:// doi. org/ 10. 1016/j.jmapro.2023.10.030.
  • 35. Wang W, Jin Y, Mu Y, Zhang M, Du J. A novel tubular structure with negative Poisson’s ratio based on gyroid-type triply periodic minimal surfaces. Virtual and Physical Prototyping. 2023;18(1):e2203701. https://doi.org/10.1080/17452759.2023.2203701.
  • 36. Liu K, Zong S, Li Y, Wang Z, Hu Z, Wang Z. Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Mar Struct.2022;84: 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  • 37. Fu T, Wang X, Rabczuk T. Broadband low-frequency sound insulation of stiffened sandwich PFGM doubly-curved shells with positive, negative and zero Poisson’s ratio cellular cores. Aerosp Sci Technol. 2024;147: 109049. https://doi.org/10.1016/j.ast.2024.109049.
  • 38. Miaofen L, Youmin L, Tianyang W, Fulei C, Zhike P. Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics. Mech Syst Signal Process. 2023;191: 110208. https://doi.org/10.1016/j.ymssp.2023.110208.
  • 39. Han Q, Chu F. Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J Sound Vib. 2015;354:219–35.https://doi.org/10.1016/j.jsv.2015.06.008.
  • 40. Wang H, Han Q, Zhou D. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mech Syst Signal Process. 2017;85:16–40. https://doi.org/10.1016/j.ymssp.2016.07.049.
  • 41. Son LT, Vinh PV, Chinh NV, Sedighi HM. High-frequency temperature-dependent vibration of nonlocal functionally graded sandwich nanoplates resting on elastic foundations. Mech Adv Mater Struct. 2024. https://doi.org/10.1080/15376494.2024.2358108.
  • 42. Ghorbanpour Arani A, Kiani F, Afshari H. Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. J Sandw Struct Mater.2021;23(1):255–78.
  • 43. Tien ND, Hoang VNV, Ninh DG, Huy VL, Hung NC. Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro–thermo–mechanical loads using Flügge–Lur’e–Bryrne theory. J Vib Control. 2021;27(9–10):1184–97.
  • 44. Nguyen NV, Nguyen-Xuan H, Nguyen TN, Kang J, Lee J. A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Compos Struct. 2021;259:113213.
  • 45. Adab N, Arefi M, Amabili M. A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Compos Struct.2022;279: 114761.
  • 46. Chu K, Jia C-C, Li W-S. Effective thermal conductivity of graphene-based composites. Appl Phys Lett. 2012. https://doi.org/10.1063/1.4754120.
  • 47. Arefi M, Moghaddam SK, Bidgoli EMR, Kiani M, Civalek O. Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Compos Struct. 2021;255(1):112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  • 48. Arefi M, Bidgoli EM-R, Dimitri R, Tornabene F, Reddy JN. Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations”. Appl Sci. 2019;9(8):1580. https://doi.org/10.3390/app9081580.
  • 49. Arefi M, Zenkour AM. Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory. Steel Compos Struct.2018;26(4):421–37. https://doi.org/10.12989/scs.2018.26.4.421.
  • 50. Arefi M, Mohammad-Rezaei Bidgoli E, Zenkour AM. Free vibration analysis of a sandwich nanoplate including FG core and piezoelectric face-sheets by considering neutral surface. Mech Adv Mater Struct. 2019;26(9):741–52. https://doi.org/10.1080/15376494.2018.1455939.
  • 51. Arefi M, Zenkour AM. Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam. J Sandw Struct Mater. 2019;21(4):1243–70.https://doi.org/10.1177/1099636217714181.
  • 52. Arefi M. A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Lat Amer J Solids Struct. 2014;11(11):2073–98. https://doi.org/10.1590/S1679-78252014001100009.
  • 53. Bich DH, Ninh DG, Thinh TI. Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects. Compos B Eng. 2016;87:75–91.
  • 54. Reddy J. Energy principles and variational methods. Hoboken: Wiley; 2002.
  • 55. Ipek C, Sofiyev A, Fantuzzi N, Efendiyeva SP. Buckling behavior of nanocomposite plates with functionally graded properties under compressive loads in elastic and thermal environments. JAppl Comput Mech. 2023;9(4):974–86. https://doi.org/10.22055/JACM.2023.43091.4019.
  • 56. Ninh DG, Bich DH. Nonlinear torsional buckling and post-buck-ling of eccentrically stiffened ceramic functionally graded material metal layer cylindrical shell surrounded by elastic foundation subjected to thermo-mechanical load. J Sandwich Struct Mater.2016;18(6):712–38.
  • 57. Bert CW, Malik M. Differential quadrature method in computational mechanics: a review. Appl Mech Rev. 1996;49(1):1–28.
  • 58. Hosseini M, Ghorbanpour Arani A, Karamizadeh MR, Afshari H, Niknejad S. Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow. Wind Struct.2019;29(6):457–69.
  • 59. Lin M, Yi A, Lin R et al. Underwater fluid-driven soft dock fordynamic recovery of AUVs with improved pose tolerance. Ocean Eng. 2024;309(2):118466. https://doi.org/10.1016/j.oceaneng.2024.118466.
  • 60. Zhan P, Lou J, Chen T et al. Dynamic hysteresis compensation and iterative learning control for underwater flexible structures actuated by macro fiber composites. Ocean Eng. 2024;298:117242. https://doi.org/10.1016/j.oceaneng.2024.117242.
  • 61. Dong J, Liu Y, Yuan S et al. Mechanical behavior and impact resistance of rubberized concrete enhanced by basalt fiber-epoxyresin composite. Constr. Build. Mater. 2024;435:136836. https://doi.org/10.1016/j.conbuildmat.2024.136836.
  • 62. Dong JF, Guan ZW, Chai HK, Wang QY. High temperaturę behaviour of basalt fibre-steel tube reinforced concrete columns with recycled aggregates under monotonous and fatigue loading. Constr. Build. Mater. 2023;389:131737. https://doi.org/10.1016/j.conbuildmat.2023.131737.
  • 63. Bao X, Yuan H, Shen J, Liu C, Chen X, Cui H. Numerical analysis of seismic response of a circular tunnel-rectangular under pass system in liquefiable soil. Comput. Geotech. 2024;174:106642.https://doi.org/10.1016/j.compgeo.2024.106642.
  • 64. Meng S, Meng F, Zhang F et al. Observer design method for non-linear generalized systems with nonlinear algebraic constraints with applications. Automatica 2024;162:111512. https://doi.org/10.1016/j.automatica.2024.111512.
  • 65. Xie G, Fu B, Li H, Du W, Zhong Y, Wang L, Geng H, Zhang J, Si L. A gradient-enhanced physics-informed neural networks method for the wave equation. Eng. Anal. Boundary Elem.2024;166:105802. https://doi.org/10.1016/j.enganabound.2024.105802.
  • 66. Dzung NM, Tan NC, Ha NH, Tien ND, Eslami H, Ninh DG. Effects of edge-crack orientation and depth on non-linear dynamics of laminated nanocomposite single-variable-edge plates. Eng Struct. 2024;304: 117553.
  • 67. Kiani F, Ariaseresht Y, Niroumand A, Afshari H. Thermo-mechanical buckling analysis of thick beams reinforced with agglomerated CNTs with temperature-dependent thermomechanical properties under a nonuniform thermal loading. Mech Based Des Struct Mach. 2024;52(1):477–97.
  • 68. Wang S, Li W, Tao Y, Zhang X, Zhang X, Li Y, Deng Y, Shen Z. Zhang X, Xu J. Investigation on the temperature dependent out-of-plane quasi-static compressive behavior of metallic honeycombs. Thin-Walled Struct. 2020;149: 106625.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebe1d1c5-c76c-4c7c-873a-dee1ee384519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.