PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolutionary multi–objective weather routing of sailboats

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a multi-objective method, which optimises the route of a sailboat. The presented method makes use of an evolutionary multi-objective (EMO) algorithm, which performs the optimisation according to three objective functions: total passage time, a sum of all course alterations made during the voyage and the average angle of heel. The last two of the objective functions reflect the navigator’s and passenger’s comfort, which may decrease with multiple turns or when experiencing an excessive heel angle for a long time. The optimisation process takes into account static bathymetry-related constraints as well as dynamic constraints related to the sailboat’s safety in changing wind and wave conditions. The method makes use of all of the above and finally returns an approximated Pareto set containing non-dominated solutions to the optimisation problem. The developed method has been implemented as a simulation application. The paper includes selected simulation results followed by their discussion.
Rocznik
Tom
Strony
130--139
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Evol Methods Des Optim Control with Appl to Ind Probl 2001:95–100. https:// doi.org/10.1.1.28.7571.
  • 2. Ben Said L, Bechikh S, Ghedira K. The r-Dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 2010;14:801–18. https://doi.org/10.1109/TEVC.2010.2041060.
  • 3. Jurdziński M. Podstawy Nawigacji Morskiej. Wydawncitwo Akademii Morskiej w Gdyni; 2003.
  • 4. Brooks RL, Jasper NH, James RW. Statistics on wave heights and periods for the North Atlantic Ocean. Trans Am Geophys Union 1958;39:1064. https://doi.org/10.1029/ TR039i006p01064.
  • 5. Wiśniewski B, Medyna P. Prognozowany zasięg pola sztormowego cyklonu tropikalnego jako domena rozmyta cyklonu. Zesz Nauk Akad Morskiej w Szczecinie 2004;nr 2:419–30.
  • 6. Lisowski J. The Sensitivity of State Differential Game Vessel Traffic Model. Polish Marit Res 2016;23:14–8. https://doi. org/10.1515/pomr-2016-0015.
  • 7. Spaans J. Windship Technology: Proceedings of the International Symposium on Windship Technology, Southampton, U.K., April 24-25, 1985., Elsevier Science; 1985, p. 385.
  • 8. Motte R. On The Selection of Discrete Grid Systems for On-Board Microbased Weather Routeing. J Navig 1990;43:104–17.
  • 9. Wiśniewski B. Programowanie tras statków na oceanach. Zesz Nauk / Akad Morska w Szczecinie 2012;29:164–73.
  • 10. Singh Y, Sharma S, Sutton R, Hatton D. Optimal Path Planning of an Unmanned Surface Vehicle in a Real- Time Marine Environment using a Dijkstra Algorithm. Proc. 12th Int. Conf. Mar. Navig. Saf. Sea Transp., Gdynia: 2017, p. 399–402.
  • 11. Neumann T. Method of Path Selection in the Graph – Case Study. TransNav, Int J Mar Navig Saf Sea Transp 2014;8:557– 62. https://doi.org/10.12716/1001.08.04.10.
  • 12. Mannarini G, Coppini G, Oddo P, Pinardi N. A Prototype of Ship Routing Decision Support System for an Operational Oceanographic Service. TransNav, Int J Mar Navig Saf Sea Transp 2013;7:53–9. https://doi.org/10.12716/1001.07.01.06.
  • 13. Zyczkowski M, Krata P, Szłapczyński R. Multi-objective weather routing of sailboats considering wave resistance. Polish Marit Res 2018;25. https://doi.org/10.2478/pomr-2018-0001.
  • 14. Zyczkowski M, Szłapczyński R. Multi-Objective Weather Routing of Sailing Vessels. Polish Marit Res 2017;24. https:// doi.org/10.1515/pomr-2017-0130.
  • 15. Życzkowski M. Sailing Vessel Routing Considering Safety Zone and Penalty Time for Altering Course. TransNav, Int J Mar Navig Saf Sea Transp 2017;11:49–54. https://doi. org/10.12716/1001.11.02.04.
  • 16. Naus K, Wąż M. The idea of using the A*algorithm for route planning an unmanned vehicle “Edredon.” Zesz Nauk / Akad Morska w Szczecinie 2013:143--147.
  • 17. Goldberg A V. Point-to-Point Shortest Path Algorithms with Preprocessing. LNCS 4362 - SOFSEM 2007 Theory Pract. Comput. Sci., 2007.
  • 18. Mostefa M-S. ScienceDirect The branch-and-bound method, genetic algorithm, and dynamic programming to determine a safe ship trajectory in fuzzy environment. Procedia Comput Sci 2014;35:348–57. https://doi.org/10.1016/j. procs.2014.08.115.
  • 19. Walther L, Shetty S, Rizvanolli A, Jahn C. Comparing Two Optimization Approaches for Ship Weather Routing, Springer, Cham; 2018, p. 337–42. https://doi. org/10.1007/978-3-319-55702-1_45.
  • 20. Vettor R, Szlapczynska J, Szlapczynski R, Tycholiz W, Soares CG. Towards improving optimised ship weather routing. Polish Marit Res 2020;27:60–9. https://doi.org/10.2478/ pomr-2020-0007.
  • 21. Ni S, Liu Z, Cai Y, Wang X. Modelling of Ship’s Trajectory Planning in Collision Situations by Hybrid Genetic Algorithm. Polish Marit Res 2018;25:14–25. https://doi.org/https://doi. org/10.2478/pomr-2018-0092.
  • 22. Lazarowska A. Multi-criteria ACO-based Algorithm for Ship’s Trajectory Planning. TransNav, Int J Mar Navig Saf Sea Transp 2017;11:31–6. https://doi.org/10.12716/1001.11.01.02.
  • 23. Lisowski J. Optimization Methods in Maritime Transport and Logistics. Polish Marit Res 2018;25:30–8. https://doi. org/10.2478/pomr-2018-0129.
  • 24. Tsou M-C, Cheng H-C. An Ant Colony Algorithm for efficient ship routing. Polish Marit Res 2013;20:28–38. https://doi. org/10.2478/pomr-2013-0032.
  • 25. Liu Y, Bucknall R. Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng 2015;97:126–44. https://doi.org/10.1016/j. oceaneng.2015.01.008.
  • 26. Szlapczynski R, Krata P. Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions. Ocean Eng 2018;158. https://doi.org/10.1016/j. oceaneng.2018.03.092.
  • 27. Życzkowski M, Szłapczyńska J, Szłapczyński R. Review of Weather Forecast Services for Ship Routing Purposes. Polish Marit Res 2019;26:80–9. https://doi.org/https://doi. org/10.2478/pomr-2019-0069.
  • 28. Zhao J, Fan J. A Ship Network Dynamic Routing Algorithm Based on Vector Network. Polish Marit Res 2018;25:62–8. https://doi.org/https://doi.org/10.2478/pomr-2018-0075.
  • 29. Krata P, Szlapczynska J. Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction. Ocean Eng 2018;150:124–37. https://doi. org/10.1016/j.oceaneng.2017.12.049.
  • 30. Pérez Arribas FL, López Piñeiro A. Seasickness prediction in passenger ships at the design stage. Ocean Eng 2007;34:2086– 92. https://doi.org/10.1016/j.oceaneng.2007.02.009.
  • 31. Wang HB, Li XG, Li PF, Veremey EI, Sotnikova M V. Application of Real-Coded Genetic Algorithm in Ship Weather Routing. J Navig 2018;71:989–1010. https://doi.org/10.1017/ S0373463318000048.
  • 32. Bechikh S, Kessentini M, Said L Ben, Ghédira K. Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art. Adv Comput 2015;98:141– 207. https://doi.org/10.1016/bs.adcom.2015.03.001.
  • 33. Sindhya K, Miettinen K, Deb K. A hybrid framework for evolutionary multi-objective optimization. IEEE Trans Evol Comput 2013;17:495–511. https://doi.org/10.1109/ TEVC.2012.2204403.
  • 34. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput 2014;18:577–601. https://doi. org/10.1109/TEVC.2013.2281535.
  • 35. Ishibuchi H, Imada R, Setoguchi Y, Nojima Y. Reference Point Specification in Inverted Generational Distance for Triangular Linear Pareto Front. IEEE Trans Evol Comput 2018;22:961– 75. https://doi.org/10.1109/TEVC.2017.2776226.
  • 36. Jaimes AL, Montaño AA, Coello CAC. Preference incorporation to solve many-objective airfoil design problems. 2011 IEEE Congr Evol Comput CEC 2011 2011:1605–12. https://doi.org/10.1109/CEC.2011.5949807.
  • 37. Sielicka MW, Stateczny A. Clustering Bathymetric Data for Electronic Navigational Charts. J Navig 2016;69:1143–53. https://doi.org/10.1017/S0373463316000035.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebd7e4c9-8768-4c88-9f08-69a34ba3c938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.