PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected microstructural phenomena in FSW joints

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybrane zagadnienia mikrostruktury spoin wykonanych w technologii FSW
Języki publikacji
EN
Abstrakty
EN
The article is a literature review on selected phenomena leading to microstructural changes in material welded using the friction stir welding (FSW) method. Particular attention was paid to the phenomena of grains recrystallization, as well as dissolution and reprecipitation of second phase particles, resulting from temperature changes during FSW. Temperature transformations in different zones of the FSW joints were characterized. The role of base material phase transformation in the formation of new particles is discussed. In the tested aluminum alloys and stainless steels, this process was particularly intensified in the heat affected zone (HAZ). In areas subjected to high temperature and significant plastic deformation (nugget zone and thermomechanically affected zone), this phenomenon did not occur or was characterized by small intensity. It was indicated that the phenomenon of particle formation clearly affects the strength parameters of the joint.
PL
W artykule przedstawiono przegląd literatury dotyczący wybranych zjawisk prowadzących do zmian mikrostrukturalnych w metalach spawanych metodą zgrzewania tarciowego (FSW). Szczególną uwagę zwrócono na zjawiska rekrystalizacji ziaren oraz rozpuszczania i ponownego wytrącania cząstek drugiej fazy, zachodzące jako efekt zmian temperatury podczas FSW. Scharakteryzowano zmiany temperatury w różnych strefach złączy FSW. Omówiono rolę przemian fazowych materiału podstawowego w powstawaniu nowych cząstek. W badanych stopach aluminium i stalach nierdzewnych proces ten był szczególnie nasilony w strefie wpływu ciepła (SWC). W obszarach narażonych na działanie wysokiej temperatury i znacznych odkształceń plastycznych (jądro zgrzeiny i strefa uplastycznienia termomechanicznego) zjawisko to nie występowało lub charakteryzowało się niewielkim natężeniem. Wykazano, że zjawisko tworzenia cząstek wyraźnie wpływa na parametry wytrzymałościowe złącza.
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Yang Y., Bi J., Liu H., Li Y., Li M., Ao S., Luo Z.: Research progress on the microstructure and mechanical properties of friction stir welded Al-Li alloy joints, Journal of Manufacturing Processes, 82 (2022), 230-244.
  • [2] Lambiase F., Derazkola H.A., Simchi A.: Friction stir welding and friction spot stir welding processes of polymers-state of the art, Materials, 13 (2020), 2291.
  • [3] Çam G., Javaheri V., Heidarzadeh A.: Advances in FSW and FSSW of dissimilar Al-alloy plates, Journal of Adhesion Science and Technology, 37(2) (2023), 162-194.
  • [4] Mishra R.S., Ma Z.Y.: Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50 (2005), 1-78.
  • [5] He X., Gu F., Ball A.: A review of numerical analysis of friction stir welding, Progress in Materials Science, 65 (2014), 1-66.
  • [6] Li K., Liu X., Zhao Y.: Research status and prospect of friction stir processing technology, Coatings, 9(2) (2019), 129.
  • [7] Rhodes C.G., Mahoney M.W., Bingel W.H., Spurling R.A., Bampton C.C.: Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Materialia, 36 (1997), 69-75.
  • [8] Morisada Y., Fujii H., Nagaoka T., Nogi K., Fukusumi M.: Fullerene/A5083 composites fabricated by material flow during friction stir processing, Composites Part A, 38 (2007), 2097-2101.
  • [9] Meng X., Huang Y., Cao J., Shen J., dos Santos J.F.: Recent progress on control strategies for inherent issues in friction stir welding, Progress in Materials Science, 115 (2021), 100706.
  • [10] Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych, Część 1. Nieustalony przepływ ciepła z uwzględnieniem przejść fazowych, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.
  • [11] Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych, Część 2. Przykłady numeryczne z zastosowaniem programu SYSWELD, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.
  • [12] Jemioło S., Gajewski M.: Zastosowanie programu SYSWELD w modelowaniu resztkowych naprężeń pospawalniczych, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.
  • [13] Kossakowski P.G., Wciślik W., Bakalarz M.: Effect of selected friction stir welding parameters on mechanical properties of joints, Archives of Civil Engineering, 65(4) (2019), 51-62.
  • [14] Jacquin D., Guillemot G.: A review of microstructural changes occurring during FSW in aluminium alloys and their modelling, Journal of Materials Processing Technology, 288 (2021), 116706.
  • [15] Hamilton C., Dymek S., Dryzek E., Kopyściański M., Pietras A., Węglowska A., Wróbel M.: Application of positron lifetime annihilation spectroscopy for characterization of friction stir welded dissimilar aluminum alloys, Materials Characterization, 132 (2017), 431-436.
  • [16] Patel V., Li W., Vairis A., Badheka V.: Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement, Critical Reviews in Solid State and Materials Sciences, 5 (2019), 378-426.
  • [17] Reynolds A.P.: Visualisation of material flow in autogenous friction stir welds, Science and Technology of Welding and Joining, 5(2) (2000), 120-124;
  • [18] Seidel T.U., Reynolds A.P.: Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metallurgical and Materials Transactions A, 32 (2001), 2879-2884.
  • [19] Colligan K.: Material flow behavior during friction stir welding of aluminum, Welding Journal, 78 (1999), 229-s-237-s.
  • [20] Schmidt H.N.B., Dickerson T.L., Hattel J.H.: Material flow in butt friction stir welds in AA2024-T3, Acta Materialia, 54 (2006), 1199-209.
  • [21] Ouyang J.H., Kovacevic R.: Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, Journal of Materials Science, 11 (2002), 51-63.
  • [22] Li Y., Murr L.E., McClure J.C.: Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al, Scripta Materialia, 40(9) 1999, 1041-1046.
  • [23] Colegrove P.A., Shercliff H.R.: 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Science, 169 (2005), 320-327.
  • [24] Nandan R., DebRoy T., Bhadeshia H.K.D.H.: Recent advances in friction-stir welding - Process, weldment structure and properties, Progress in Materials Science, 53 (2008), 980-1023.
  • [25] El-Sayed M.M., Shash A.Y., Mahmoud T.S., Abd-Rabbou M.: Effect of friction stir welding parameters on the peak temperature and the mechanical properties of aluminum alloy 5083-O, Advanced Structured Materials, 72 (2018), 11-25.
  • [26] El-Sayed M.M., Shash A.Y., Abd-Rabou M., ElSherbiny M.G.: Welding and processing of metallic materials by using friction stir technique: A review, Journal of Advanced Joining Processes, 3 (2021), 100059.
  • [27] Cho J.H., Boyce D.E., Dawson P.R.: Modeling strain hardening and texture evolution in friction stir welding of stainless steel, Materials Science and Engineering: A, 398 (2005), 146-163.
  • [28] Ma Z.Y.: Friction stir processing technology: A review, Metallurgical and Materials Transactions A, 39 (2008), 642-658.
  • [29] Prakash P., Jha S.K., Lal S.P.: Numerical investigation of stirred zone shape and its effect on mechanical properties in friction stir welding process, Welding World, 63 (2019), 1531-1546.
  • [30] Chen K., Liu X., Ni J.: A review of friction stir-based processes for joining dissimilar materials, The International Journal of Advanced Manufacturing Technology, 104 (2019), 1709-1731.
  • [31] Gallais C., Denquin A., Bréchet Y., Lapasset G.: Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: characterisation and modelling, Materials Science and Engineering: A, 496 (2008), 77-89.
  • [32] Hattel J.H., Schmidt H.N.B., Tutum C.: Thermomechanical modelling of friction stir welding. The 8th International Conference Trends in Welding Research, Pine Mountain, Georgia, USA, 2008.
  • [33] Imam M., Biswas K., Racherla V.: On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys, Materials & Design, 52 (2013), 730-739.
  • [34] Jacquin D., De Meester B., Simar A., Deloison D., Montheillet F., Desrayaud C.: A simple Eulerian thermomechanical modelling of friction stir welding, Journal of Materials Processing Technology, 211(1) (2011), 57-65.
  • [35] Tang W., Guo X., McClure J.C., Murr L.E.: Heat input and temperature distribution in friction stir welding, Journal of Materials Processing and Manufacturing Science, 7(2) (1998), 163-172.
  • [36] Sharma V., Prakash U., Kumar B.V.M.: Surface composites by friction stir processing: A review, Journal of Materials Processing Technology, 224 (2015), 117-134.
  • [37] Rodrigues D.M., Loureiro A., Leitao C., Leal R.M., Chaparro B.M., Vilaça P.: Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds, Materials & Design, 30 (2009), 1913-1921.
  • [38] Węglowski M.S.: Friction stir processing - State of the art, Archives of Civil and Mechanical Engineering, 18 (2018), 114-129.
  • [39] Givi M.K.B., Asadi P.: Advances in friction stir welding and processing. Woodhead Publishing, Amsterdam, 2014.
  • [40] Kassner M.E., Barrabes S.: New developments in geometric dynamic recrystallization, Materials Science and Engineering: A, 410 (2005), 152-155.
  • [41] Heidarzadeh A., Mironov S., Kaibyshev R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J.: Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Progress in Materials Science, 117 (2021), 100752.
  • [42] Dudova N., Belyakov A., Sakai T., Kaibyshev R.: Dynamic recrystallization mechanisms operating in a Ni-20% Cr alloy under hot-to-warm working, Acta Materialia, 58 (2010), 3624-3632.
  • [43] Liu H., Fujii H.: Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding, Materials Science and Engineering: A, 711 (2018), 140-148.
  • [44] Humphreys F.J., Hatherly M.: Recrystallization and related annealing phenomena, Elsevier, 2004.
  • [45] Prabhu S.R.B., Shettigar A.K., Herbet M.A., Rao S.S.: Microstructure evolution and mechanical properties of friction stir welded AA6061/Rutile composite, Materials Research Express, 6(8) (2019), 0865i7.
  • [46] Padmanaban G., Balasubramanian V., Sarin Sundar J.K.: Influences of welding processes on microstructure, hardness, and tensile properties of AZ31B magnesium alloy, Journal of Materials Engineering and Performance, 19 (2010), 155-165.
  • [47] Wciślik W.: Experimental determination of critical void volume fraction fF for the Gurson Tvergaard Needleman (GTN) model, Procedia Structural Integrity, 2 (2016), 1676-1683.
  • [48] Wciślik W., Pała R.: Some microstructural aspects of ductile fracture of metals, Materials, 14(15) (2021), 4321.
  • [49] Wciślik W., Lipiec S.: Void-induced ductile fracture of metals: experimental observations, Materials, 15(18) (2022), 6473.
  • [50] Dixit S., Mahata A., Mahapatra D.R., Kailas S.V., Chattopadhyay K.: Multi-layer graphene reinforced aluminum - Manufacturing of high strength composite by friction stir alloying, Composites Part B: Engineering, (136) (2018), 63-71.
  • [51] Merah N., Azeem M.A., Abubaker H.M., Al-Badour F., Albinmousa J., Sorour A.A.: Friction stir processing influence on microstructure, mechanical, and corrosion behavior of steels: a review, Materials, (14) (2021), 5023.
  • [52] Sato Y.S., Nelson T.W., Sterling C.J., Steel R.J., Pettersson C.O.: Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel, Materials Science and Engineering: A, (397) (2005), 376-384.
  • [53] Kwon Y.J., Saito N., Shigematsu I.: Friction stir process as a new manufacturing technique of ultrafine grained aluminium alloy, Journal of Materials Science, (21) (2002), 1473-1476.
  • [54] Saeid T., Abdollah-zadeh A., Assadi H., Malek Ghaini F.: Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Materials Science and Engineering: A, (496) (2008), 262-268.
  • [55] Ma Z.Y., Mishra R.S., Mahoney M.W.: Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Materialia, 50(17) (2002), 4419-4430.
  • [56] Johnson P., Murugan N.: Microstructure and mechanical properties of friction stir welded AISI321 stainless steel, Journal of Materials Research and Technology, 9(3) (2020), 3967-3976.
  • [57] Gain S., Das S.K., Sanyal D., Acharyya S.K.: Exploring friction stir welding for joining 316L steel pipes for industrial applications: Mechanical and metallurgical characterization of the joint and analysis of failure, Engineering Failure Analysis, 150 (2023), 107331.
  • [58] Li H., Yang S., Zhang S., Zhang B., Jiang Z., Feng H., Han P., Li J.: Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654, Materials and Design, 118 (2017), 207-217.
  • [59] Ahmed M.M.Z., Hajlaoui K., El-Sayed Seleman M.M., Elkady M.F., Ataya S., Latief F.H., Habba M.I.A.: Microstructure and mechanical properties of friction stir welded 2205 duplex stainless steel butt joints, Materials, 14 (2021), 6640.
  • [60] Liu F.C., Nelson T.W.: In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel, Materials and Design, 115 (2017), 467-478.
  • [61] Salih O.S., Ou H., Sun W., McCartney D.G.: A review of friction stir welding of aluminium matrix composites, Materials & Design, (86) (2015), 61-71.
  • [62] Zhang Z., Xiao B.L., Ma Z.Y.: Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints, Journal of Materials Science, (47) (2012), 4075-4086.
  • [63] Huang K., Marthinsen K., Zhao Q., Logé R.E.: The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials, Progress in Materials Science, (92) (2018), 284-359.
  • [64] Kloc L., Spigarelli S., Cerri E., Evangelista E., Langdon T.G.: Creep behavior of an aluminum 2024 alloy produced by powder metallurgy, Acta Materialia, (45) (1997), 529-540.
  • [65] Deschamps A., Fribourg G., Bréchet Y., Chemin J.L., Hutchinson C.R.: In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy, Acta Materialia, (60) (2012), 1905-1916.
  • [66] Sugimoto I., Park S.H.C., Hirano S., Saito H., Hata S.: Microscopic observation of precipitation behavior at friction stirring zone of super duplex stainless steel, Materials Transactions, 60(9) (2019), 2003-2007.
  • [67] Manugula V.L., Rajulapati K.V., Reddy G.M., Mythili R., Bhanu Sankara Rao K.: Influence of tool rotational speed and post-weld heat treatments on friction stir welded reduced activation ferritic-martensitic steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48(8) (2017), 3702-3720.
  • [68] Farneze H.N., Tavares S.S.M., Pardal J.M., Londoño A.J.R., Pereira V.F., Barbosa C.: Effects of thermal aging on microstructure and corrosion resistance of AISI 317L steel weld metal in the FSW process, Materials Research, 18(2) (2015), 98-103.
  • [69] He B., Cui L., Wang D.P., Li H.J., Liu C.X.: Microstructure and mechanical properties of RAFM-316L dissimilar joints by friction stir welding with different butt joining modes, Acta Metallurgica Sinica (English Letters), 33 (2020), 135-146.
  • [70] Ma Z.Y., Sharma S.R., Mishra R.S., Mahoney M.W.: Unpublished results.
  • [71] Dumont M., Steuwer A., Deschamps A., Peel M., Withers P.J.: Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS, Acta Materialia, (54) (2006), 4793-4801.
  • [72] Genevois C., Deschamps A., Denquin A., Doisneau-Cottignies B.: Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Materialia, (53) (2005), 2447-2458.
  • [73] Bastow T.J., Hill A.: Guinier-Preston and Guinier-Preston-Bagaryatsky zone reversion in Al-Cu-Mg alloys studied by NMR, Materials Science Forum, (519-521) (2006), 1385-1390.
  • [74] Morozova I., Królicka A., Obrosov A., Yang Y., Doynov N., Weiß S., Michailov V.: Precipitation phenomena in impulse friction stir welded 2024 aluminium alloy, Materials Science and Engineering A, (852) (2022), 143617.
  • [75] Ehrich J., Staron P., Karkar A., Roos A., Hanke S.: Precipitation evolution in the heat-affected zone and coating material of AA2024 processed by friction surfacing, Advanced Engineering Materials, (24) (2022), 2201019.
  • [76] Ostermann F.: Anwendungstechnologie aluminium. Springer-Verlag, Berlin, 2014.
  • [77] Sauvage X., Dédé A., Cabello Muñoz A., Huneau B.: Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys, Materials Science and Engineering A, (491) (2008), 364-371.
  • [78] Hamilton C., Dymek S., Kopyściański M., Węglowska A., Pietras A.: Numerically based phase transformation maps for dissimilar aluminum alloys joined by friction stir-welding, Metals, 8(5) (2018), 324.
  • [79] Santos T.G., Miranda R.M., Vilaça P., Teixeira J.P., dos Santos J.: Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, Science and Technology of Welding and Joining, 16(7) (2011), 630-635.
  • [80] Hou J.C., Liu H.J., Zhao Y.Q.: Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by selfreacting friction stir welding tool, International Journal of Advanced Manufacturing Technology, (73) (2014), 1073-1079.
  • [81] Zhao Y., Wang C., Dong C.: Microstructural characteristics and mechanical properties of water cooling bobbin-tool friction stir welded 6063-T6 aluminum, MATEC Web of Conferences, (206) (2018), 03002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebd60b04-7f3d-4b08-9642-1d8e0c7e253d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.