PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture Process and Instability Precursor Determination of Freeze-thaw Red Sandstone Based on Acoustic Emission Monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research on the damage and fracture mechanism of freeze-thaw (F-T) rocks under loading is a key scientific endeavor derived from numerous safety concerns in cold region rock mass engineering. This study analyzed the relationship between the entire triaxial compression process of the red sandstone and acoustic emission parameters. Based on the nonlinear growth characteristics of cumulative event counts of acoustic emission, a predictive method was proposed for determining the crack initiation strength, damage strength, and failure strength of F-T sandstone. The results demonstrated that this method exhibited good consistency with the crack volume strain approach and accurately and conveniently predicted sample failure strength. The fitted curve of the equation closely aligned with experimental data. These findings offer insights into the classification of damage and fracture mechanisms in F-T sandstone and provide valuable groundwork for research on rock failure prediction and forecasting methods employing acoustic emission monitoring.
Rocznik
Strony
art. no. 191193
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Architecture and Civil Engineering, Xi’an University of Science and technology, China
autor
  • School of Architecture and Civil Engineering, Xi’an University of Science and technology, China
autor
  • School of Architecture and Civil Engineering, Xi’an University of Science and technology, China
autor
  • School of Civil Engineering, Southwest Jiaotong University, China
Bibliografia
  • 1. Sakurai S. Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice. Acta Geotechnica 2010; 5(2): 121-126, https:// doi.org/10.1007/s11440-010-0117-0.
  • 2. Boon C W, Houlsby G T, Utili S. Designing tunnel support in jointed rock masses via the DEM. Rock Mechanics and Rock Engineering 2014; 48(2):603-632, https://doi.org/10.1007/s00603-014-0579-8.
  • 3. Phuor T, Harahap I S H, Ng C Y, Al-Bared M A M. Development of the skew boundary condition for soil-structure interaction in three-dimensional finite element analysis. Computers and Geotechnics 2021; 137: 104264, https://doi.org/10.1016/j.compgeo.2021.104264.
  • 4. Wu N, Liang Z, Zhang Z. Development and verifcation of three-dimensional equivalent discrete fracture network modelling based on the fnite element method. Engineering Geology 2022; 306: 106759, https://doi.org/10.1016/j.enggeo.2022.106759.
  • 5. Feng Q, Xu J S, Cai C X, Liu W W, Jin J C, Han W W, Zhe Q. Damage constitutive model and meso-failure characteristics of freeze-thaw rock triaxial compression. Bulletin of Engineering Geology and the Environment 2024; 83: 122, https://doi.org/10.1007/s10064-024-03594-0.
  • 6. Meng Z S, Ma C, Xie Y Y. Influence of impact load form on dynamic response of chock-shield support. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2023; 25(3): 168316, http://doi.org/10.17531/ein/168316.
  • 7. Chang X K, Wu S C, Cheng H Y, Fu X. Full-waveform Characteristics and Frequency Spectrum of Acoustic Emission for Fine Sandstone, Journal of Yangtze River Scientific Research Institute 2022; 39(07): 118-125, https://doi.org/10.11988/ckyyb.20210249.
  • 8. Do T N, Wu J H. Simulation of the Inclined Jointed Rock Mass Behaviors in a Mountain Tunnel Excavation Using DDA. Computers and Geotechnics 2019; 117: 103249, https://doi.org/10.1016/j.compgeo.2019.103249.
  • 9. Sasong, M, Park, D, Yoo, J, and Li, J S. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. International Journal of Rock Mechanics and Mining Sciences 2011; 48(7): 1055-1067, https://doi.org/10.1016/j.ijrmms.2011.09.001.
  • 10. Yun M C, Ren J X, Zhang L, Zhang K. Research on triaxial compressive mechanical properties and damage constructive model of post-thawing double-fractured quasi-sandstones with different angles. Heliyon 2024; 10: e34268, https://doi.org/10.1016/j.heliyon.2024.e34268.
  • 11. Ren J X, Yun M C, Cao X T L, Zhang K, Liang Y, Chen X. Study on the mechanical properties of saturated red sandstone under freeze-thaw conditions. Environmental Earth Sciences 2022; 81(14): 376, https://doi.org/10.1007/s12665-022-10503-9.
  • 12. Wang Y, Cao Z, Li P, Yi X. On the fracture and energy characteristics of granite containing circular cavity under variable frequency-amplitude fatigue loads. Theoretical and Applied Fracture Mechanics 2023; 125: 103872, https://doi.org/10.1016/j.tafmec.2023.103872.
  • 13. Wen S, Du L, Kong Q, Zhang M, Ding X. Study on Microwave- X assisted TBM Double-edged Cutter Rock-breaking Efficiency and its Positional Relationship, Eksploatacja i Niezawodnosc-Maintenance and Reliability 2024; 26(2): 186447, http://doi.org/10.17531/ein/186447.
  • 14. Mieczkowski G. Criterion for crack initiation from notch located at the interface of bi-material structure. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2019; 21 (2): 301-310, http://dx.doi.org/10.17531/ein.2019.2.15.
  • 15. Cox, S J D, Meredith P G. Microcrack formation and material softening in rock measured by monitoring acoustic emissions. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1993; 30: 11-24, https://doi.org/10.1016/0148-9062(93)90172-A.
  • 16. Kong B, Wang E Y, Li Z H, Wang X R, Liu J, Li N. Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions. Rock Mechanics and Rock Engineering 2016; 49(12): 4911-4918, https://doi.org/10.1007/s00603-016-1011-3.
  • 17. Novikov E A, Oshkin R O, Shkuratnik V L, Epshtien S A, Dobryakova N N. Application of thermally stimulated acoustic emission method to assess the thermal resistance and related properties of coals. International Journal of Mining Science and Technology 2018; 28: 243-249, https://doi.org/10.1016/j.ijmst.2017.12.019.
  • 18. Li X, Li J, He D, Qu Y. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2019; 21 (3): 403-410, http://dx.doi.org/10.17531/ein.2019.3.6.
  • 19. Li D X, Wang E Y, Kong X G, Ali M, Wang D M. Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a pre-existing flaw of various inclinations under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences 2019; 116: 38-51, https://doi.org/10.1016/j.ijrmms.2019.03.022.
  • 20. Qiu L M, Song D Z, Li Z H, Liu B B, Liu J. Research on AE and EMR response law of the driving face passing through the fault. Safety Science 2019; 117:184-193, https://doi. org/10.1016/j.ssci.2019.04.021.
  • 21. Liu X X, Wu L X, Zhang Y B, Liang Z Z, Yao X L, Liang P. Frequency properties of acoustic emissions from the dry and saturated rock. Environmental Earth Sciences 2019; 78(3): 67, https://doi.org/10.1007/s12665-019-8058-x.
  • 22. Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1994; 31(6): 643-659, https://doi.org/10.1016/0148-9062(94)90005-1.
  • 23. Mark S D. Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Canadian Geotechnical Journal 2007; 44(9): 1082-1116, https://doi.org/10.1139/T07-033.
  • 24. Zhao X G, Cai M, Wang J, Ma L K. Damage stress and acoustic emission characteristics of the Beishan granite. International journal of Rock Mechanics and Mining Science 2013; 64(12): 258-269, https://doi.org/10.1016/j.ijrmms.2013.09.003.
  • 25. Zhu J,Deng J H, Huang Y M, Yu Z Q. Experimental study on the characteristic strength of saturated marble. Chinese Journal of Rock Mechanics and Engineering 2019; 38(06): 1129-1138, https://doi.org/10.13722/j.cnki.jrme.2018.1302
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebce3ddb-424b-42db-b0ea-19b4906a5325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.