Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate dynamical models are imperative to the development of accurate monitoring and control systems, which are foundational to safety in construction and infrastructure projects. However, the highly coupled non-linear dynamics of crane systems requires the application of many simplifying assumptions to the dynamical crane model. To achieve accurate control, simplifications should yield minimal error in modelled behaviour for maximal reduction in model complexity. However, limited information is available on the situational suitability of different combinations of simplifications to construction tower crane models. This paper informs designers of the optimal dynamical models to represent boom tower cranes, with respect to the crane characteristics and selection criteria. The optimal models are determined though the comparison of ten 2D and 3D dynamical models in representation of three variations of boom tower crane that are commonly deployed on construction sites. The comparison includes analysis of over 100 simulations and experimentation. The value of the presented optimal model selection framework is in facilitating systems designers to develop accurate crane monitoring and control systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e162, 2023
Opis fizyczny
Bibliogr. 38 poz., fot., wykr.
Twórcy
autor
- Department of Mechanical and Aerospace Engineering, Monash University, 14 Alliance Lane, Clayton, VIC 3800, Australia
autor
- Department of Mechanical and Aerospace Engineering, Monash University, 14 Alliance Lane, Clayton, VIC 3800, Australia
autor
- Department of Civil Engineering, Monash University, 14 Alliance Lane, Clayton, VIC 3800, Australia
Bibliografia
- 1. Hong K-S, Shah UH. Dynamics and control of industrial cranes. Berlin: Springer; 2019.
- 2. Iturralde K et al. A cable driven parallel robot with a modular end effector for the installation of curtain wall modules. Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), 2020.
- 3. Liang C-J, Kang S-C, Lee M-H. Ras: a robotic assembly system for steel structure erection and assembly. Int J Intell Robot Appl. 2017;1(4):459–76. https://doi.org/10.1007/s41315-017-0030-x.
- 4. Johns B, Arashpour M, Abdi E. Curtain wall installation for high- rise buildings: Critical review of current automation solutions and opportunities. In: Proceedings of the 37th International Sympo- sium on Automation and Robotics in Construction (ISARC). (2020).
- 5. Choi SD, Guo L, Kim J, Xiong S. Comparison of fatal occupa- tional injuries in construction industry in the United States, South Korea, and China. Int J Ind Ergon. 2019;71:64–74. https://doi.org/ 10.1016/j.ergon.2019.02.011.
- 6. Gharaie E, Lingard H, Cooke T. Causes of fatal accidents involv- ing cranes in the Australian construction industry. Constr Econ Build. 2015;15(2):1–12. https://doi.org/10.5130/AJCEB.v15i2. 4244.
- 7. Fang Y, Cho YK, Durso F, Seo J. Assessment of operator’s situa- tion awareness for smart operation of mobile cranes. Autom Con- str. 2018;85:65–75. https://doi.org/10.1016/j.autcon.2017.10.007.
- 8. Ouyang H, Tian Z, Yu L, Zhang G. Partial enhanced-coupling control approach for trajectory tracking and swing rejection in tower cranes with double-pendulum effect. Mech Syst Signal Process. 2021;156: 107613. https://doi.org/10.1016/j.ymssp.2021. 107613.
- 9. Ramli L, Mohamed Z, Abdullahi AM, Jaafar HI, Lazim IM. Con- trol strategies for crane systems: a comprehensive review. MechSyst Signal Process. 2017;95:1–23. https:// doi. org/ 10. 1016/j. ymssp.2017.03.015.
- 10. Rauscher F, Sawodny O. Modeling and control of tower cranes with elastic structure. IEEE Trans Control Syst Technol. 2021;29(1):64–79. https://doi.org/10.1109/TCST.2019.2961639.
- 11. Abis C. Kalman Filter approaches on crane swing. Master’s thesis, Michigan Technological University (2012).
- 12. Wu Q, Wang X, Hua L, Xia M. Modeling and nonlinear sliding mode controls of double pendulum cranes considering distrib- uted mass beams, varying roped length and external disturbances. Mech Syst Signal Process. 2021;158: 107756. https://doi.org/10. 1016/j.ymssp.2021.107756.
- 13. Huang J, Xie X, Liang Z. Control of bridge cranes with distrib- uted-mass payload dynamics. IEEE/ASME Trans Mechatron. 2015;20(1):481–6. https://doi.org/10.1109/TMECH.2014.23118 25.
- 14. Ye J, Huang J. Analytical analysis and oscillation control of pay- load twisting dynamics in a tower crane carrying a slender pay- load. Mech Syst Signal Process. 2021;158: 107763. https://doi. org/10.1016/j.ymssp.2021.107763.
- 15. Peng J, Huang J, Singhose W. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear Dyn. 2019;98(2):1041–8. https:// doi. org/ 10. 1007/ s11071-019-05247-4.
- 16. Yoon J, Nation S, Singhose W, Vaughan JE. Control of crane payloads that bounce during hoisting. IEEE Trans Control Syst Technol. 2014;22(3):1233–8. https://doi.org/10.1109/TCST.2013. 2264288.
- 17. Jin L, Liu H, Zheng X, Chen S. Exploring the impact of wind loads on tower crane operation. Math Prob Eng. 2020. https://doi. org/10.1155/2020/2807438.
- 18. Tomczyk J, Cink J, Kosucki A. Dynamics of an overhead crane under a wind disturbance condition. Autom Constr. 2014;42:100– 11. https://doi.org/10.1016/j.autcon.2014.02.013.
- 19. Cekus D, Gnatowska R, Kwiatoń P. Impact of wind on the movement of the load carried by rotary crane. Appl Sci. 2019;9(18):3842. https://doi.org/10.3390/app9183842.
- 20. Arena A, Casalotti A, Lacarbonara W, Cartmell MP. Dynamics of container cranes: three-dimensional modeling, full-scale experi- ments, and identification. Int J Mech Sci. 2015;93:8–21. https:// doi.org/10.1016/j.ijmecsci.2014.11.024.
- 21. Schlott P, Geise A, Grabmair G, Fritzel T, Sawodny O. A crane- based five-axis manipulator for antenna tests. Control Eng Pract. 2019;85:149–62. https://doi.org/10.1016/j.conengprac.2019.01. 014.
- 22. Kimiaghalam B, Homaifar A, Bikdash M, Hunt BR. Feedforward control law for a shipboard crane with Maryland rigging system. J Vib Control. 2002;8(2):159–88. https://doi.org/10.1177/10775 4602023816.
- 23. Lee J-W, Kim D-H, Park K-T. Fuzzy control of sway and skew of a spreader by using four auxiliary cables. In: Proceedings of International Conference on Control, Automation, and Systems. (2005).
- 24. Sato K, Ohishi K, Miyazaki T. Anti-sway crane control con- sidering wind disturbance and container mass. Elect Eng Jpn. 2015;193(1):21–32. https://doi.org/10.1002/eej.22580.
- 25. Zheng X, et al. Ale formulation for dynamic modeling and simula- tion of cable-driven mechanisms considering stick-slip frictions. Mech Syst Signal Process. 2022;168: 108633. https://doi.org/10. 1016/j.ymssp.2021.108633.
- 26. Ho T, et al. A switched optimal control approach to reduce transferring time, energy consumption, and residual vibration of payload’s skew rotation in crane systems. Control Eng Pract. 2019;84:247–60. https://doi.org/10.1016/j.conengprac.2018.11. 018.
- 27. Cibicik A, Myhre TA, Egeland O. Modeling and control of a bifi- lar crane payload. In 2018 Annual American Control Conference (ACC). (2018).
- 28. Hindmarsh AC, et al. Sundials: suite of nonlinear and dif- ferential/algebraic equation solvers. ACM Trans Math Softw. 2005;31(3):363–96. https://doi.org/10.1145/1089014.1089020.
- 29. Rackauckas C. A comparison between differential equation solver suites in matlab. In: Julia R, Python C, Editors, Mathematica, Maple, and Fortran. The Winnower (2018). https://doi.org/10. 15200/winn.153459.98975 .
- 30. Sanderson C, Curtin R. Armadillo: a template-based c++ library for linear algebra. J Open Source Softw. 2016;1(2):26. https://doi. org/10.21105/joss.00026.
- 31. Hamano F. Derivative of rotation matrix-direct matrix deriva- tion of well-known formula. In: Proceedings of the IEEE Green Energy and Systems Conference (IGESC 2013). (2013).
- 32. Shampine LF, Reichelt MW. The MATLAB ODE suite. SIAM J Sci Comput. 1997;18(1):1–22. https://doi.org/10.1137/S1064 827594276424.
- 33. Verner JH. Numerically optimal Runge-Kutta pairs with inter- polants. Num Algor. 2010;53(2):383–96. https://doi.org/10.1007/ s11075-009-9290-3.
- 34. Shampine LF, Reichelt MW, Kierzenka JA. Solving index-1 DAEs in MATLAB and Simulink. SIAM Rev. 1999;41(3):538–52. https://doi.org/10.1137/S003614459933425X.
- 35. Shampine LF. Solving 0 = F(t, y(t), y’(t)) in MATLAB. J Numer Math. 2002;10(4):291–310. https://doi.org/10.1515/JNMA.2002. 291.
- 36. Beléndez A, Pascual C, Méndez D, Beléndez T, Neipp C. Exact solution for the nonlinear pendulum. Revista brasileira de ensino de física. 2007;29(4):645–8.
- 37. Lee C, Lee G. Feasibility of beam erection with a motorized hook- block. Autom Constr. 2014;41:25–32. https://doi.org/10.1016/j. autcon.2014.01.003.
- 38. Takahashi H, et al. Sensor-less and time-optimal control for load- sway and boom-twist suppression using boom horizontal motion of large cranes. Autom Constr. 2022;134: 104086. https://doi.org/ 10.1016/j.autcon.2021.104086.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebcbef1a-1563-4c68-879a-c916e945823a