PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of post-weld heat treatment on thermal diffusivity in UNS S32304 duplex stainless steel welds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The thermal diffusivity variation of UNS S32304 duplex stainless steel welds was studied after pulsed GTA welding autogenous process without filler addition. This property was measured in the transverse section of thin plates after welding process and post-heat treated at 750°C for 8 h followed by air-cooling. Design/methodology/approach: The present work reports measurements of thermal diffusivity using the laser-flash method. The thermal cycles of welding were acquired during welding by means of k-type thermocouples in regions near the weld joint. The used shielding gas was pure argon and 98% argon plus 2% of nitrogen. The temperature profiles were obtained using a digital data acquisition system. Findings: It was found an increase of thermal diffusivity after welding process and a decrease of these values after the heat treatment regarding the solidified weld pool zone, irrespective of the welding protection atmosphere. The microstructure was characterized and an increase of austenite phase in the solidified and heat-affected zones was observed for post-weld heat-treated samples. Research limitations/implications: It suggests more investigation and new measurements about the influence of the shielding gas variation on thermal diffusivity in the heat-affected zone. Practical implications: The nuclear industry, especially, requests alloys with high thermal stability in pipes for power generation systems and safe transportation equipment’s for radioactive material. Thus, the duplex stainless steel grades have improved this stability over standard grades and potentially increase the upper service temperature reliability of the equipment. Originality/value: After heat treatment, the welded plate with 98%Ar plus 2%N2 as shielding gas presented a thermal diffusivity closer to the as received sample. By means of 2%-nitrogen addition in shielding gas during GTAW welding of duplex stainless steel may facilitate austenite phase reformation, and then promotes stability on the thermal diffusivity of duplex stainless steels alloys.
Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, 05508-000, São Paulo, Brasil
autor
  • Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, 05508-000, São Paulo, Brasil
autor
  • Mechanical Engineering Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brasil
  • Mechanical Engineering Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brasil
  • Unité Matériaux et Transformations, Université Lille, 1- Cité Scientifique, 59650 Villeneuve d’Ascq, France
autor
  • Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, 05508-000, São Paulo, Brasil
Bibliografia
  • [1] VA. Hosseini, S. Wessman, K. Hurtig, L. Karlsson, Nitrogen loss and effects on micro structure in multipass TIG welding of a super duplex stainless steel, Materials & Design 98 (2016) 88-97.
  • [2] J.D. Tucker, M.K. Miller, GA. Young, Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications, Acta Materialia87 (2015) 15-24.
  • [3] E.G. Betini, F.C. Ceoni, CS. Mucsi, R. Politano, M.T.D. Orlando, J.L. Rossi, Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products, Proceedings of the International Nuclear Atlantic Conference - INAC, 2015, Säo Paulo-SP, Brazil, 1-6.
  • [4] G.E. Torten, C.E. Bates, NA. Clinton, Handbook of Quenchants and Quenching Technology, ASM International, 1993.
  • [5] J.-O. Nilsson, Super duplex stainless steels, Materials Science and Technology 8/8 (1992) 685-700.
  • [6] S. Henrik, R. Sandström, Austenite reformation in the heat-affected zone of duplex stainless steel 2205, Materials Science and Engineering A 418/1 (2006) 250-256.
  • [7] J. Li, Z. Ma, X. Xiao, J. Zhao, L. Jiang, On the behavior of nitrogen in a low-Ni high-Mn super duplex stainless steel, Materials & Design. 32 (2011) 2199-2205.
  • [8] S. Hertzman, B. Brolund, P.J. Ferreira, An experimental and theoretical study of heat-affected zone austenite reformation in three duplex stainless steels, Metallurgical and Materials Transactions A 28/2 (1997) 277-285.
  • [9] V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds, Materials Science and Engineering A 358/1 (2003) 9-16.
  • [10] Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, J. Li, Effect of post-weld heat treatment on micro structure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corrosion Science 62 (2012) 42-50.
  • [11] R. Badji, B. Belkessa, H. Maza, M. Bouabdallah, B. Bacroix, C. Kahloun, Effect of post weld heat treatment on micro structure and mechanical properties of welded 2205 duplex stainless steel, Materials Science Forum 467 (2004) 217-222.
  • [12] S. Saravanan, K. Raghukandan, N. Sivagurumanikandan, Pulsed Nd: YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel, Journal of Manufacturing Processes 25 (2017) 284-289.
  • [13] F.H. Ley, S. Campbell, A. Galloway, N. McPherson, Effect of shielding gas parameters on weld metal thermal properties in gas metal arc welding, International Journal of Advanced Manufacturing Technology 80/5 (2015) 1213-1221.
  • [14] R.H.A. Abas, N.K. Tai eh, Experimental study of the thermal diffusivity and heat capacity concerning some duplex stainless steel, Khwarizmi Engineering Journal 11/2(2015)51-61.
  • [15] E.G. Betini, F.C. Cione, CS. Mucsi, MA. Colosio, J.L. Rossi, M.T.D.A. Orlando, Experimental study of the temperature distribution in welded thin plates of duplex stainless steel for automotive exhaust systems, SAE Technical Paper (2016) 2016-01-0503.
  • [16] P. Matteis, E. Campagnoli, D. Firrao, G. Ruscica, Thermal diffusivity measurements of metastable austenite during continuous cooling, International Journal of Thermal Sciences 47/6 (2008) 695-708.
  • [17] K.H. Tseng, CP. Chou, The effect of pulsed GTA welding on the residual stress of a stainless steel weldment, Journal of Materials Processing Technology 123/3 (2002) 346-353.
  • [18] W.J. Parker, RJ. Jenkins, CP. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal. Applied of Physics 32/9 (1961) 1679-1684.
  • [19] Standard ASTM E1461-01, Standard Test Method for Thermal Diffusivity by the Flash Method, 2001.
  • [20] J.R. Davies (Ed.), ASM Specialty Handbook: Stainless Steels, ASM International, USA, 1994, 291-301.
  • [21] E.G. Betini, Determination of Some Thermal Properties of Advanced Ceramics Doped with Rare Earth ion Ce4+, Master Dissertation, Federal University of Espirito Santo-Vitöria, Brazil, 2013 (in Portuguese).
  • [22] V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Effect of nitrogen addition on formation of secondary austenite in duplex stainless steel weld metals and resultant properties, Science and Technology of Welding and Joining 9/1 (2004) 47-52.
  • [23] Y.C. Lin, PY. Chen, Effect of nitrogen content and retained ferrite on the residual stress in austenitic stainless steel weldments, Materials Science and Engineering A 307/1 (2001) 165-171. [24] C.S.C. Machado, M.X. Milagre, M.T.D. Orlando, J.L. Rossi, Effect of protection gas in the residual stress profile of UNS S32304 stainless steel welded with TIG, Blucher Physics Proceedings - V Encontro Cientifico de Fisica Aplicada, 1(2), 2014, 1-4 (in Portuguese).
  • [25] J. Lancaster, Metallurgy of Welding, 6th Edition, Wood Head Publishing, Cambridge, 1999, 464.
  • [26] E. Johnson, Y.J. Kim, L.S. Chumbley, B. Gleeson, Initial phase transformation diagram determination for the CD3MN cast duplex stainless steel, Scripta Materialia 50/10 (2004) 1351-1354.
  • [27] Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, C. Zhou, Effects of nitrogen in shielding gas on micro structure evolution and localized corrosion behavior of duplex stainless steel welding joint, Applied Surface Science 404 (2017) 110-128.
  • [28] A. Tahaei, A.F.M. Perez, M. Merlin, F.A.R. Valdes, G.L. Garagnani, Effect of the addition of nickel powder and post weld heat treatment on the metallurgical and mechanical properties of the welded UNS S32304 duplex stainless steel, Soldagem & Inspecao 21/2 (2016) 197-208.
  • [29] E.M. Westin, Micro structure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101, PhD Thesis, Royal Institute of Technology, Sweden, 2010.
  • [30] Y. Terada, K. Ohkubo, T. Mohri, T. Suzuki, Thermal conductivity of intermetallic compounds with metallic bonding, Materials Transactions 43/12 (2002) 3167-3176.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebca9236-3300-4b53-aab2-e7f01abf487d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.