Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The normal curve is a space curve that plays an important role in the field of differential geometry. This research focuses on analyzing the properties of normal curves on smooth immersed surfaces, considering their invariance under isometric transformations. The primary contribution of this article is to explore the requirements for the image of a normal curve that preserves its invariance under isometric transformations. In this article, we investigate the invariant condition for the component of the position vector of the normal curves under isometry and compute the expression for the normal and geodesic curvature of such curves. Moreover, it has been investigated that the geodesic curvature and Christoffel symbols remain unchanged under the isometry of surfaces in R3.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240017
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, Jammu and Kashmir, India
autor
- School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, Jammu and Kashmir, India
autor
- Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226025, Uttar Pradesh, India
Bibliografia
- [1] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Dover Publications, Mineola, New York, 2016.
- [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly 110 (2003), no. 2, 147–152.
- [3] A. Pressley, Elementary Differential Geometry, Springer-Verlag, London, 2001.
- [4] M. S. Lone, Geometric invariants of normal curves under conformal transformation in E3, Tamkang J. Math. 53 (2022), no. 1, 75–87.
- [5] A. I. Bobenko and C. Gunn, DVD-Video PAL, Springer VideoMATH, Heidelberg, Berlin, Germany, 2018, https://www.springer.com/us/book/9783319734736.
- [6] B. Y. Chen and F. Dillen, Rectfying curve as centrode and extremal curve, Bull. Inst. Math. Acad. Sin. 33 (2005), no. 2, 77–90.
- [7] S. Deshmukh, B. Y. Chen, and S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turkish J. Math. 42 (2018), no. 2, 609–620.
- [8] A. A. Shaikh, M. S. Lone, and P. R. Ghosh, Conformal image of an osculating curve on a smooth immersed surface, J. Geom. Phys. 151 (2020), 103625.
- [9] A. A. Shaikh, M. S. Lone, and P. R. Ghosh, Rectifying curves under conformal transformation, J. Geom. Phys. 163 (2021), 104117.
- [10] A. A. Shaikh, M. S. Lone, and P. R. Ghosh, Normal curves on a smooth immersed surface, Indian J. Pure Appl. Math. 51 (2020), 1343–1355.
- [11] A. A. Shaikh and P. R. Ghosh, Rectifying curves on a smooth surface immersed in the Euclidean space, Indian J. Pure Appl. Math. 50 (2019), no. 4, 883–890.
- [12] A. A. Shaikh and P. R. Ghosh, Rectifying and osculating curves on a smooth surface, Indian J. Pure Appl. Math. 51 (2020), no. 1, 67–75.
- [13] M. He, D. B. Goldgof, and C. Kambhamettu, Variation of Gaussian curvature under conformal mapping and its application, Comput. Math. Appl. 26 (1993), no. 1, 63–74.
- [14] K. Ilarslan and E. Nešović, Timelike and null normal curves in Minkowski space E13, Indian J. Pure Appl. Math. 35 (2004), 881–888.
- [15] C. Camci, L. Kula, and K. Ilarslan, Characterizations of the position vector of a surface curve in Euclidean 3-space, An. St. Univ. Ovidius Constanta 19 (2011), no. 3, 59–70.
- [16] F. Schwarz, Transformation to canonical form, Algorithmic Lie Theory for Solving Ordinary Differential Equations, Chapman and Hall/CRC, New York, 2007, pp. 257–320.
- [17] A. A. Shaikh and P. R. Ghosh, Curves on a smooth surface with position vectors lie in the tangent plane, Indian J. Pure Appl. Math. 51 (2020), no. 3, 1097–1104.
- [18] S. Sharma and K. Singh, Some aspects of rectifying curves on regular surfaces under different transformations, Int. J. Anal. Appl. 21 (2023), 78.
- [19] D. Fuchs, I. Izmestiev, M. Raffaelli, G. Szewieczek, and S. Tabachnikov, Differential geometry of space curves: forgotten chapters, Math. Intelligencer 46 (2024), 9–21.
- [20] A. A. Shaikh and P. R. Ghosh, On the position vector of surface curves in the Euclidean space, Publ. Inst. Math. 126 (2022), 95–101.
- [21] K. Ilarslan and E. Nesovic, Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math. 41 (2008), no. 4, 931–939.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebc952b9-bad7-4875-a936-0f3c32689112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.