PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multiperiodal management method at user level for storage systems using artificial neural network forecasts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase of renewable non-programmable production and the necessity to locally self-consume the produced energy led to utilize ever more storage systems. To correctly utilize storage systems, an opportune management method has to be utilized. This paper implements a multi-period management method for storage systems, using different management strategies. The method aims to minimize the total absorbed and supplied energy or the peak power exchanged with the grid. The results show the effectiveness of the method in diminishing the energy exchanged with the grid and also the possibility to optimize the performance of the storage systems.
Rocznik
Strony
29--36
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
autor
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
autor
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
autor
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
autor
  • Department of Mechanical, Energy and Management Engineering (DIMEG) University of Calabria Via Bucci 42C, Arcavacata di Rende - CS, Italy
Bibliografia
  • [1] D. Menniti, A. Pinnarelli, N. Sorrentino, A. Burgio, and G. Brusco, “Energy Management System for an Energy District With Demand Response Availability”, Smart Grid, IEEE Transactions on, vol. 5(5), 2014, pp. 2385-2393.
  • [2] D. Menniti, A. Pinnarelli, N. Sorrentino, G. Belli, A. Burgio, “Demand Response Program in an Energy District with storage availability”, International Review of Electrical Engineering, in press.
  • [3] A. Nottrott, J. Kleissl, and B. Washom, “Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic- battery storage systems”, Renewable Energy, vol. 55, 2013, pp. 230-240.
  • [4] N. Jayasekara, P. Wolfs, and M.A.S. Masoum, “An optimal management strategy for distributed storages in distribution networks with high penetrations of PV”, Electric Power Systems Research, vol. 116, 2014, pp. 147-157.
  • [5] P. Vytelingum, T.D. Voice, S.D. Ramchurn, A. Rogers, and N.R. Jennings, “Agent-based micro-storage management for the smart grid”, in Proc. of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, International Foundation for Autonomous Agents and Multiagent Systems, pp. 39-46, May 2010.
  • [6] I. Atzeni, L.G. Ordónez, G. Scutari,D.P. Palomar, and J.R. Fonollosa, “Demand-side management via distributed energy generation and storage optimization”, Smart Grid, IEEE Transactions on, vol. 4(2), 2013, pp.866-876.
  • [7] A. Mohamed, and O. Mohammed, "Real-time energy management scheme for hybrid renewable energy systems in smart grid applications", Electric Power Systems Research, Vol. 96, 2013, pp. 133-143.
  • [8] D.Menniti, A. Pinnarelli, N. Sorrentino, A. Burgio, G. Brusco, “The economic viability of a feed-in tariff scheme which solely awards the self-consumption for promoting the use of integrated photovoltaic- battery systems”, Applied Energy, in press.
  • [9] S. Makridakis, and M. Hibon, “Evaluating accuracy (or error) measures”, Working paper 95/18/TM, INSEAD, (1995) France.
  • [10] Y. Zhang, M. Beaudin, Raouf Taheri, H. Zarcipour, and D. Wood, “Day-Ahead Power PV power production Output Forecasting for Small Scale Soar Photovoltic Electricity Generators”, IEEE Transactions on Smart Grid, Vol. 6, no. 5, September 2015.
  • [11] C. Chen, S. Duan, T. Cai, and B. Liu, “Online 24-h solar power forecasting based on weather type classification using artificial neural network”, Solar Energy, Vol. 85, no. 11, 2011, pp. 2856-2870.
  • [12] C. W. Chow, B. Urquhart, J. Kleissl, M. Lave, A. Dominguez, J. Shields, and B. Washom, “Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed”, Solar Energy, Vol 85, no. 11, 2011, pp 2881-2893.
  • [13] J. J. More, “The Levenberg-Marquardt algorithm: Implementation and theory”, in Lecture Notes in Mathematics, No. 630-Numerical Analysis, Springer-Verlag, 1978, pp. 105-116.
  • [14] N. Hatziarg, Microgrids: Architectures and Control, Wiley-IEEE Press, February 2014.
  • [15] H. S. Hippert, C. E. Pedreira, and R.C. Souza, “Neural networks for short-term load forecasting: A review and evaluation”, Power Systems, IEEE Transactions on, vol. 16(1), 2011, pp 44-55.
  • [16] H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady, “Short-term electricity load forecasting of buildings in microgrids”, Energy and Buildings, vol. 99, 2015, pp. 50-60.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebc28a71-9e9d-4cfb-a782-84e213c30c1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.