Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present the numerical study of unsteady hydromagnetic (MHD) flow and heat trans- fer characteristics of a viscous incompressible electrically conducting water-based nanofluid (containing Al₂O₃ nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for electronic industry in maintaining the electronic components under effective and safe operational conditions.
Czasopismo
Rocznik
Tom
Strony
1033--1046
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
autor
- Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
Bibliografia
- 1. Ali K., Ashraf M., Jameel N., 2013, Numerical simulation of MHD micropolar fluid flow and heat transfer in a channel with shrinking walls, Canadian Journal of Physics, 10.1139/cjp-2013-0324
- 2. Ashraf M., Kamal M.A., Syed K.S., 2009, Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk, Journal of Applied Mathematics and Modelling, 33, 1933-1943
- 3. Ashraf M., Wehgal A.R., 2012, MHD flow and heat transfer of micropolar fluid between two porous disks, Applied Mathematics and Mechanics (English Edition), 33, 51-64
- 4. Banchok N., Ishak A., Pop I., 2011, Flow and heat transfer over a rotating porous disk in a nanofluid, Physica B, 406, 1767-1772
- 5. Buongiorno J., 2006, Convective transport in nanofluids, ASME Journal of Heat Transfer, 128, 240-250
- 6. Choi S.U.S., 1995, Enhancing thermal conductivity of fluids with nano particles, [In:] Developments and Applications of Non-Newtonian Flows, Siginer D.A., Wang H.P. (Eds.), 31, 99-105
- 7. Connor J.J., Boyd J., Avallone E.A., 1968, Standard Handbook of Lubrication Engineering, McGraw-Hill, New York
- 8. Das S.K., Choi S.U.S., 2007, Nanofluids: Science and Technology, Wiley, New Jersey
- 9. Deuflhard P., 1983, Order and step-size control in extrapolation methods, Numerical Mathematics , 41, 399-422
- 10. Elcrat A. R., 1976, On the radial flow of a viscous fluid between porous disks, Archive for Rational Mechanics and Analysis, 61, 91-96
- 11. Kakac S., Pramuanjaroenkij A., 2009, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52, 3187-3196
- 12. Majdalani J., Zhou C., Dawson C.A., 2002, Two dimensional viscous flows between slowly expanding or contracting walls with weak permeability, Journal of Biomechanics, 35, 1399-1403
- 13. Nakamura S., 1991, Applied Numerical Methods with Software, Prentice-Hall, 442-446
- 14. Rasmussen H., 1970, Steady viscous flow between two porous disks, Zeitschrift f¨ur Angewandte Mathematik und Physik, 21, 187-195
- 15. Roache P.J., Knupp P.M., 1993, Completed Richardson extrapolation, Communications in Numerical Methods in Engineering, 9, 365-374
- 16. Usha R., Ravindranthe R., 2001, Numerical study of film cooling on rotating disk, International Journal of Nonlinear Mechanics, 36, 147-154
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebbf3abb-0906-4240-8946-c50bf1e6d4a6