Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new approach to build an interval observer for nonlinear un certain systems is presented in this paper. Nonlinear systems modeled in the Takagi-Suge no (T-S) form are studied. A T-S proportional observer is first issued by pole-placement and LMI tools. Secondly, time-varying change of coordinates for each dynamic state estimation error is used to design an interval observer. The system state bounds are then directly deduced.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
397--407
Opis fizyczny
Bibliogr. 24 poz., wykr., wzory
Twórcy
autor
- Department of Electronic, Badji Mokhtar University, Po. Box 12, 23000, Annaba, Algeria
autor
- Department of Electronic, Badji Mokhtar University, Po. Box 12, 23000, Annaba, Algeria
autor
- Department of Electronic, Badji Mokhtar University, Po. Box 12, 23000, Annaba, Algeria
Bibliografia
- [1] A. Akhenak, M. Chadli, J. Ragot and D. Maquin: Design of robust fuzzy observer for uncertain Takagi-Sugeno models. IEEE Int. Conf. on Fuzzy Systems, Budapest, Hungary, (2004).
- [2] A. Akhenak, M. Chadli, J. Ragot and D. Maquin: State estimation via multiple observer with unknown input: Application to the three tank system. 5th IFAC Symp. on Fault Detection Supervision and Safety for Technical Processes, Washington, USA, (2003).
- [3] O. Bernard and J. L. Gouze: Closed loop observers bundle for uncertain biotechnological models. J. of Process Control, 14, (2004), 765-774.
- [4] S. Boyd, L. Ghaoui, E. Feron and V. Balakrishan: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.
- [5] S. Chebotarev, D. Efimov, T. Raissi and A. Zolghadri: On interval observer design for a class of continuous-time LPV systems. IFAC Nolcos, Toulouse, France, (2013).
- [6] D. Efimov, L. Fridman, T. Raissi, A. Zolghadri and R. Seydoud: Interval estimation for LPV systems applying high order sliding mode techniques. Automatica, 48, (2012), 2365-2371.
- [7] D. Efimov, W. Perruquetti, T. Raissi and A. Zolghadri: On interval observer design for time-invariant discrete-time systems. European Control Conf., Zurich, Switzerland, (2013).
- [8] D. Efimov, T. Raissi, A. Chebotarev and A. Zolghadri: Interval state observer for nonlinear time varying systems. Automatica, 49, (2013), 200-205.
- [9] J. L. Gouze, A. Rapaport and Z. Hadj-Sadok: Interval observers for uncertain biological systems. Ecological Modelling, 133, (2000), 45-56.
- [10] D. G. Lunberger: Observers of multivariable systems. IEEE Trans. on Automatic Control, 11, (1966), 190-197.
- [11] X. J. Ma, Z. Q. Sun and Y. Y. He: Analysis and design of fuzzy controller and fuzzy observer. IEEE Trans. on Fuzzy Systems, 6, (1998), 41-51.
- [12] F. Mazenc and O. Bernard: Interval observers for linear time-invarariant systems with disturbances. Automatica, 47, (2011), 140-147,
- [13] F. Mazenc and O. Bernard: Asymptotically stable interval observers for planar systems with complex poles. IEEE Trans. on Automatic Control, 55, (2010), 523-527.
- [14] M. Moisan and O. Bernard: Robust interval observers for uncertain chaotic systems. 45th IEEE Conf. on Decision and Control, San Diego, USA, (2006).
- [15] M. Moisan, O. Bernard and J. L. Gouze: Near optimal interval observers bundle for uncertain bioreactors. Automatica, 45, (2009), 291-295.
- [16] M. Moisan and O. Bernard: Robust interval observers for global Lipschitz uncertain chaotic systems. Systems and Control Letters, 59, (2010), 687-694.
- [17] L. Perko: Differential Equations and Dynamical Systems. 3rd Edition. Springer, 2000.
- [18] T. Raissi, D. Efimov and A. Zolghadri: Interval state estimation for a class of nonlinear systems. IEEE Trans. on Automatic Control, 57, (2012), 260-265.
- [19] T. Raissi, G. Videau and A. Zolghadri: Interval observer design for consistency checks of nonlinear continuous-time systems. Automatica, 46, (2010), 518-527.
- [20] M. A. Rami, J. Jordan and M. Schonlein: Interval observers for linear systems with time-varying delays. Int. Symp.on Mathematical Theory of Networks and Systems, Budapest, Hungary, (2010).
- [21] A. Rapaport and D. Dochain: Interval observers for biochemical processes with uncertain kinetics and inputs. Mathematical Biosciences, 193, (2005), 235-253.
- [22] T. Takagi and M. Sugeno: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems Man and Cybernetic, 15, (1985), 116-132.
- [23] H. O. Wang and K. Tanaka: Fuzzy control systems design and analysis. John Wiley & Sons., 2001.
- [24] G. Zheng, D. Efimov and W. Perruquetti: Design of interval observer for a class of uncertain unobservable nonlinear systems. Automatica, 63, (2016), 167-174.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebbaf6ba-6201-497c-9bda-c9876f62379c