PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance investigation and element optimization of 2D array transducer using Bat Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the least expensive and safest diagnostic modalities routinely used is ultrasound imaging. An attractive development in this field is a two-dimensional (2D) matrix probe with three-dimensional (3D) imaging. The main problems to implement this probe come from a large number of elements they need to use. When the number of elements is reduced the side lobes arising from the transducer change along with the grating lobes that are linked to the periodic disposition of the elements. The grating lobes are reduced by placing the elements without any consideration of the grid. In this study, the Binary Bat Algorithm (BBA) is used to optimize the number of active elements in order to lower the side lobe level. The results are compared to other optimization methods to validate the proposed algorithm.
Rocznik
Strony
561--579
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
  • Mechatronics Engineering and Automation Department, Faculty of Engineering Egyptian Chinese University Egypt
  • Electronics and Communication Engineering Department, Faculty of Engineering Helwan University Egypt
  • Department of Biomedical Engineering, Faculty of Engineering Helwan University Egypt
autor
  • Electronics and Communication Engineering Department, Faculty of Engineering Helwan University Egypt
Bibliografia
  • [1] Fenster A., Downey D.B., Cardinal H.N., Three-dimensional ultrasound imaging, Phys. Med. Biol., vol. 46, pp. 67–99 (2001).
  • [2] Davidsen R.E., Smith S.W., A multiplexed two-dimensional array for real time volumetric and B-mode imaging, IEEE Ultrasonics Symposium, Proceedings, San Antonio, TX, USA, pp. 1523–1526 (1996).
  • [3] Chi Hyung Seo, Yen J.T., A 256 × 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 56, pp. 837–847 (2009).
  • [4] Chen P., Shen B., Zhou L., Chen Y., Optimized simulated annealing algorithm for thinning and weighting large planar arrays, Journal of Zhejiang University Science C, vol. 11, pp. 261–269 (2010).
  • [5] Trucco A., Thinning and weighting of large planar arrays by simulated annealing, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 46, pp. 347–355 (1999).
  • [6] Diarra B., Robini M., Tortoli P., Cachard C., Liebgott H., Design of optimal 2-D non-grid sparse arrays for medical ultrasound, IEEE Transactions on Biomedical Engineering, no. 99 (2013).
  • [7] Bavaro V., Caliano G., Pappalardo M., Element shape design of 2-D CMUT arrays for reducing grating lobes, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 55, no. 2, pp. 308–318 (2008).
  • [8] Bhuyan A. et al., Integrated Circuits for Volumetric Ultrasound Imaging with 2-D CMUT Arrays, IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 796–804 (2013).
  • [9] Matrone G., Savoia A., Terenzi M., Caliano G., Quaglia F., Magenes G., A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and 3-beamforming electronics models, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 61, no. 5, pp. 792–804 (2014).
  • [10] Savoia A.S., Scaglione G., Caliano G., Mazzanti A., Sautto M., Quaglia F., Second-harmonic reduction in CMUTs using unipolar pulsers, in 2015 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2015).
  • [11] Diarra B. et al., Comparison of different optimized irregular sparse 2D ultrasound arrays, IEEE International Ultrasonics Symposium (IUS), Tours, France, 2016, pp. 1–4 (2016).
  • [12] Diarra B., Liebgott H., Robini M., Tortoli P., Cachard C., Novel strategies in 2D sparse arrays for 3D ultrasound imaging, European Journal of Medical Physical, vol. 32, no. 2, pp. 420–421 (2016).
  • [13] Roux E., Ramalli A., Liebgott H., Cachard C., Robini M.C., Tortoli P., Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 64, no. 1, pp. 108–125 (2017).
  • [14] Diarra B., Robini M., Liebgott H., Cachard C., Tortoli P., Variable-size elements in 2D sparse arrays for 3D medical ultrasound, IEEE International Ultrasonics Symposium (IUS), Prague, pp. 508–511 (2013).
  • [15] Roux E., Varray F., Petrusca L., Cachard C., Tortoli P., Liebgott H., Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves, Scientific Reports, vol. 8, no. 1, p. 9108 (2018).
  • [16] Haupt R.L., Optimized Weighting of Uniform Subarrays of Unequal Sizes, IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1207–1210 (2007).
  • [17] Kesong Chen, Yun Xiaohua, He Zisku, Han Chunlin, Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm, Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1067–1073 (2007).
  • [18] Jensen J.A., FIELD: A Program for Simulating Ultrasound Systems, 10th Nordic Baltic Conference on Biomedical Imaging, vol. 4, pp. 351–353 (1996).
  • [19] Jensen J.A., Svendsen N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 39, pp. 262–267 (1992).
  • [20] Tortoli P., Bassi L., Boni E., Dallai A., Guidi F., Ricci S., ULA-OP: an advanced open platform for ultrasound research, IEEE Transactions on Ultrasonics Ferroelectronics and Frequency Control, vol. 56, pp. 2207–2216 (2009).
  • [21] Anderson-Cook C.M., Practical Genetic Algorithms (2nd ed.): Randy L. Haupt and Sue Ellen Haupt, Journal of the American Statistical Association, vol. 100, pp. 1099–1099 (2005).
  • [22] Pandey H.M., Performance Evaluation of Selection Methods of Genetic Algorithm and Network Security Concerns, Procedia Computer Science, vol. 78, pp. 13–18 (2016).
  • [23] Blickle T., Thiele L., A Comparison of Selection Schemes Used in Evolutionary Algorithms, Evolutionary Computation, vol. 4, no. 4, pp. 361–394 (1996).
  • [24] Kirkpatrick S., Gelati C.D., Vecchi M.P., Optimization by simulated annealing, Science, vol. 220, pp. 671–680 (1983).
  • [25] Ezhilarasi M., Rajaram M., Sivanandham S.N., Fractal Geometry in 2D Matrix Array for Real time 3D Ultrasound Imaging, Calicut Medical Journal 2008, vol. 6 (2008).
  • [26] Turnbull D.H., Foster F.S., Beam steering with pulsed two dimensional transducer arrays, IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, vol. 38, no. 4, pp. 320–333 (1991).
  • [27] Cardone G., Cincotti G., Gori P., Pappalardo M., Optimization of wide-band linear arrays, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, pp. 943–952 (2001).
  • [28] Diarra B. et al., Feasibility of Genetic Algorithms in 2D Ultrasound Array Optimization, IEEE International Ultrasonics Symposium (IUS), Kobe, pp. 1–9 (2018).
  • [29] Mirjalili S., Mirjalili S.M., Yang X., Binary bat algorithm, Neural Computing and Applications, vol. 25, pp. 663–681 (2014).
  • [30] Li T., Dong H., Sun J., Binary Differential Evolution Based on Individual Entropy for Feature Subset Optimization, IEEE Access, vol. 7, pp. 24109–24121 (2019), DOI: 10.1109/ACCESS.2019.2900078.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebba476e-da8c-4951-ac06-724cbcbfa6d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.