PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to elaborate on mechanical alloying conditions for a composite powder consisting of copper and brittle aluminium oxides. Detailed analysis of the Cu-Al2O3 powder mixture structure obtained in the mechanical alloying process allows for the study of the homogenization phenomena and for obtaining grains (in composite form) with a high degree of uniformity. The Cu-5vol.%Al2O3 composites were obtained by means of the spark plasma sintering technique. The results presented herein were studied and discussed in terms of the impact of using a different form of aluminium oxide powder and a different shape of copper powder on composite properties. Research methodology included microstructure analysis as well as its relation to the strength of Cu-Al2O3 interfaces. It transpires from the results presented below that the application of electrocorundum as a reinforcement phase in composites decreases porosity in the ceramic phase, thus improving thermal properties and interfacial strength.
Rocznik
Strony
553--560
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., tab.
Twórcy
  • Institute of Electronic Materials Technology, 133 Wolczyńska St., 01-919 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, 133 Wolczyńska St., 01-919 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, 133 Wolczyńska St., 01-919 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw, Poland
  • Institute of Electronic Materials Technology, 133 Wolczyńska St., 01-919 Warsaw, Poland
Bibliografia
  • [1] V. Rajković, D. Boˇzić, M. Popović, and M.T. Jovanović, “The influence of powder particle size on properties of Cu-Al2O3 composites”, Sci Sinter. 41, 185–192 (2009).
  • [2] M. Korać, Z. Kamberović, Z. Andjić, M. Filipowić, and M. Tasić, “Sintering materials based on copper and alumina powders synthesized by a novel method”, Sci Sinter. 42, 81–90 (2010).
  • [3] Y.M. Shabana, B.L. Karihaloo, H.X. Zhu, and S. Kulasegaram, “Influence of processing defects on the measured properties of Cu-Al2O3 composites: A forensic investigation”, Compos.: Part A. 46, 140–146 (2013).
  • [4] L. Wang, J.L. Shi, M. Lin, H.R. Chen, and D.S. Yan, “The thermal shock behavior of alumina-copper composite”, Mater Res Bull. 36, 925–932 (2001).
  • [5] B. Sartowska, J. Piekoszewski, L. Waliś, J. Senatorski, J. Stanisławski, R. Ratajczak, L. Nowicki, M. Kopcewicz, F. Prokert, and M. Barlak, “Structure and composition of scales formed on AISI 316 L steel alloyed with Ce/La using high intensity plasma pulses after oxidation in 1000◦C”, Surf Coat Tech. 201, 8295–8298 (2007).
  • [6] J.S. Benjamin and T.E. Volin, “The mechanism of mechanical alloying”, Metall Transact. 1, 2943 (1970).
  • [7] A. Strojny-Nędza and K. Pietrzak, “Processing, microstructure and properties of different method obtained Cu-Al2O3 composites”, Arch Metall Mater. 59, 1301–1306 (2014).
  • [8] A. Swiderska-Sroda, T. Wejrzanowski, K.J. Kurzydłowski, and J.W. Wyrzykowski, “Quantitative analysis of Al2O3 particles in Al3Ti/Al2O3/Al composites”, Mater Characteriz. 51, 95–100 (2003).
  • [9] D.M. Jarząbek, M. Chmielewski, and T. Wojciechowski, “The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites”, Compos Part A: Appl Sc and Manuf. 76, 124–130 (2015).
  • [10] D.M. Jarząbek, M. Chmielewski, J. Dulnik, and A. Strojny-Nędza, “The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites”, J Mater Eng Perform. 25, 3139–3145 (2016).
  • [11] M. Chmielewski and W. Węglewski, “Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials”, Bull. Pol. Ac.: Tech. 61 (2), 507–514 (2013).
  • [12] K. Dash, “Processing and characterization of Cu-Al2O3 and Al-Al2O3 composites: an evaluation for micro- and nano- particulate reinforcements”, Ph.D. Thesis, p. 20–28, National Institute of Technology, Rourkela, India (2014).
  • [13] K.P. Trumble, “Prediction of a critical temperature for aluminate formation in alumina/copper–oxygen eutectic bonding, J Amer Cer Soc. 82, 2919–2920 (1999).
  • [14] C.W. Seager, K. Kokini, K. Trumble, and M.J. Krane, “The influence of CuAlO2 on the strength of eutectically bonded Cu/Al2O3 interfaces”, Script Material. 46, 395–400 (2002).
  • [15] S.T. Kim and C.H. Kim, “Interfacial reaction product and its effect on the strength of copper to alumina eutectic bonding”, J Mater Sci. 27, 2061–2066 (1992).
  • [16] A. Fathy, F. Shehata, M. Abdelhameed, and M. Elmahdy, “Compressive and wear resistance of nanometric alumina reinforced copper matrix composites”, Mater Des. 36, 100–107 (2012).
  • [17] K. Dash, B. Ray, and D. Chaira, “Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering”, J Alloys Comp. 516, 78–84 (2012).
  • [18] T. Wejrzanowski, W.L. Spychalski, K. Rożniatowski, and K.J. Kurzydłowski, “Image based analysis of complex microstructures of engineering materials”, Int J Ap Mat Com-Pol. 18, 33–39 (2008).
  • [19] P. Nieroda, R. Zybala, and K.T. Wojciechowski, “Development of the method for the preparation of Mg2Si by SPS technique”, AIP Conference Proceedings, vol. 1449, 199–202 (2012).
  • [20] C. Suryanarayana, “Mechanical alloying and milling”, Progress in Mater Sci. 46, 1–181 (2010).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebb80a0c-fc98-4629-a1e8-0614946bd9e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.