PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of thermal annealing on structure and oxidation of iron nanowires

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2014 (10th ; 15-18.06.2014 ; Wrocław, Poland)
Języki publikacji
EN
Abstrakty
EN
Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic fi eld. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta). At higher Ta, hematite was the dominant phase in the nanowires.
Czasopismo
Rocznik
Strony
87--91
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 69 Hoża Str., 00-681 Warsaw, Poland
autor
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
autor
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
autor
  • Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan, R.O.C.
autor
  • Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan, R.O.C.
autor
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
autor
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 69 Hoża Str., 00-681 Warsaw, Poland
Bibliografia
  • 1. Chertok, B., Moffat, B. A., David, A. E., Yu, F., Bergemann, C., Ross, B. D., & Yang, V. C. (2008). Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 29(4), 487–496. DOI: 10.1016/j.biomaterials. 2007.08.050.
  • 2. Zhang, X. X., Wen, G. H., Huang, S., Dai, L., Gao, R., & Wang, Z. L. (2001). Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J. Magn. Magn. Mater., 231(1), 9–12.DOI: 10.1016/S0304-8853(01)00134-2.
  • 3.Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-catalyzed reactions in organic synthesis. Chem. Rev., 104(12), 6217–6254. DOI: 10.1021/cr040664h.
  • 4.Getzlaff, M., Bansmann, J., & Schonhense, G. (1995). Oxygen on Fe(100) and Fe(110). Fresenius J. Anal. Chem., 353(5/8), 743–747. DOI: 10.1007/BF00321362.
  • 5. Zeeshan, M. A., Pane, S., Youn, S. K., Pellicer, E., Schuerle, S., Sort, J., Fusco, S., Lindo, A. M., Park, H. G., & Nelson, B. J. (2013). Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Adv. Funct. Mater., 23(7), 823–831. DOI: 10.1002/adfm.201202046.
  • 6. Lin, W. S., Jian, Z. J., Lin, H. M., Lai, L. C., Chiou, W. A., Hwu, Y. K., Wu, S. H., Chen, W. C., & Yao, Y. D. (2013). Synthesis and characterization of iron nanowires. J. Chinese Chem. Soc., 60(1), 85–91. DOI: 10.1002/jccs.201200263.
  • 7. Jubb, A. M., & Allen, H. C. (2010). Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces, 2(10), 2804–2812.DOI: 10.1021/am1004943.
  • 8. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides. Structure, properties, reactions, occurrences and uses. Weinheim, Germany: Wiley-VCH.
  • 9. Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc.,131(25), 8824–8832. DOI: 10.1021/ja900353f.
  • 10. Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., & Suslick, K. S. (1998). Mossbauer-Bauer-effect and x-ray-absorption spectral study of sonochemically prepared amorphous iron. Phys. Rev. B, 57(17), 10716–10722. DOI: 10.1103/PhysRevB.57.10716.
  • 11. Machala, L., Zboril, R., & Gedanken, A. (2007). Amorphous iron(III) oxide – a review. J. Phys. Chem. B, 111(16), 4003–4018. DOI: 10.1021/jp064992s.
  • 12. Cao, X., Koltypin, Y., Katabi, G., & Prozorov, R. (1997). Preparation and characterization of amorphous nanometre sized Fe3O4 powder. J. Mater. Chem., 7(6), 1007–1009. DOI: 10.1039/a606739e.
  • 13. Petrov, Y. I., & Shafranovsky, E. A. (2012). On the conditions eliciting a detailed structure in the hyperfine field distribution at 57Fe nuclei. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 271, 96–101. DOI: 10.1016/j.nimb.2011.10.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebb797ca-4b6d-418c-8a3b-f8cdeeda643c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.