Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we describe the creation of a model of the motion of a flying object in a geocentric coordinate system (ECEF - Earth-Centered, Earth-Fixed). Such a model can be used to investigate the accuracy and resistance of radio navigation systems to interference. The essence of the design of the model lies in the mathematical description of the motion of a flying object in a geocentric coordinate system. The flight trajectory of a flying object consists of one straight section and two turns. When creating a model, we assume a flight at a constant altitude. In this paper, we present one of the possible procedures for modelling the motion of a flying object in a geocentric coordinate system. We chose the initial coordinates of the flying object according to flightradar 24. We used the Matlab software for computer simulation.
Rocznik
Tom
Strony
791--794
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
- Technical University of Kosice, Kosice, Slovakia
Bibliografia
- 1. Džunda, M.: Modeling of the Flight Trajectory of Flying Objects. In: 2018 XIII International Scientific Conference - New Trends in Aviation Development (NTAD). pp. 46–49 (2018). - doi:10.1109/NTAD.2018.8551685
- 2. Džunda M., Dzurovčin P., Melniková L.: Determination of Flying Objects Position. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 13, No. 2, doi:10.12716/1001.13.02.21, pp. 423-428, 2019
- 3. Herrejon, R., Kagami, S., Hashimoto, K.: Online 3-D trajectory estimation of a flying object from a monocular image sequence. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2496–2501 (2009). - doi:10.1109/IROS.2009.5353936
- 4. Hossain, S., Lee, D.: Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial Imagery via a Flying Robot with GPU-Based Embedded Devices. Sensors. 19, 15, (2019). - doi:10.3390/s19153371
- 5. Kotianová, N.: Relatívna navigácia v komunikačnej sieti letectva. Dizertačná práca. LF TUKE (2016).
- 6. Kotianová, N., Vaispacher, T., Draxler, D.: Selected aspects of modeling of movements of flying objects. In: Majernik, M., Daneshjo, N., and Bosák, M. (eds.) Proceedings of the Production Management and Engineering Sciences. pp. 431–434 , High Tatras Mountains, Slovak Republic (2015). - doi:10.1201/b19259
- 7. Ma, Z., Wang, Y., Yang, Y., Wang, Z., Tang, L., Ackland, S.: Reinforcement Learning-Based Satellite Attitude Stabilization Method for Non-Cooperative Target Capturing. Sensors. 18, 12, (2018). - doi:10.3390/s18124331
- 8. Oda, K., Tazuneki, S., Yoshida, T.: The flying object for an open distributed environment. In: Proceedings 15th International Conference on Information Networking. pp. 87–92 (2001). - doi:10.1109/ICOIN.2001.905334
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebb5947e-fa16-4858-8232-bdf6e5ac87d0