PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reinforcement of compatibilized nanoclay/Inviya fibers to epoxy‑based glass fiber nanocomposites for high‑impact strength applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research work is the first successful trial in which silanized nanoclay and compatibilized Inviya fibers were reinforced in epoxy-based glass fiber reinforced composites (EGFCs) resulting in significant improvements in impact strength without degrading tensile properties. Vacuum assisted resin infusion moulding (VARIM) technique was used for processing of multi-scale filler reinforced EGFCs. Inviya fibers were used, because of their high ‘elastic recovery’ and ‘stretchability’ (five times the original length) due to alternative flexible and rigid molecular structure. Nanoclay and Inviya fibers were subjected to compatibilization with different surface treatments. Compatibilization of fillers was confirmed through Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy-Energy-dispersive spectroscopy (FE-SEM/EDS) analysis. Nanoclay dispersion and morphology in EGFCs was ascertained through X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analysis. Reinforcement of compatibilized Inviya fibres (First Method: maleic anhydride grafting, and Second Method: combination of phosphoric acid treatment followed by silanization) enhanced the impact strength by 132% and 150%, respectively, over the reference composition. FE-SEM micrographs of fracture surface of impact test specimens were utilized to identify the mechanisms causing improvement in impact behaviour.
Rocznik
Strony
art. no. e84, 2023
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
autor
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
autor
  • Chemical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
  • TIET‑Virginia Tech Center of Excellence in Emerging Materials (CEEMS), Thapar Institute of Engineering and Technology, Patiala, India
Bibliografia
  • 1. Thipperudrappa S, Ullal Kini A, Hiremath A. Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites. Polym Compos. 2020;41:174-81. https://doi.org/10.1002/pc.25357.
  • 2. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym. 2018;181:650-8. https:// doi.org/10.1016/J.CARBPOL.2017.11.099.
  • 3. Demir B, Beggs KM, Fox BL, Servinis L, Henderson LC, Walsh TR. A predictive model of interfacial interactions between functionalised carbon fibre surfaces cross-linked with epoxy resin. Compos Sci Technol. 2018;159:127-34. https://doi.org/10.1016/J.COMPSCITECH.2018.02.029.
  • 4. Wu Q, Zhao R, Zhu J, Wang F. Interfacial improvement of carbon fiber reinforced epoxy composites by tuning the content of curing agent in sizing agent. Appl Surf Sci. 2020;504:144384. https://doi.org/10.1016/j.apsusc.2019.144384.
  • 5. Kumar S, Singh KK, Ramkumar J. The effects of graphene nanoplatelets on the tribological performance of glass fiber-reinforced epoxy composites. Proc Inst Mech Eng Part J J Eng Tribol. 2021;235:1514-25. https://doi.org/10.1177/1350650120965756.
  • 6. Gao H, Fan Y, Zeng S, Chen P, Xu Y, Nie W, et al. Enhanced interfacial adhesion in glass fiber fabric/epoxy composites employing fiber surface treatment with aminosilane-functionalized graphene oxide. Text Res J. 2021;91:790-801. https://doi.org/10.1177/0040517520960749.
  • 7. Ghabezi P, Harrison N. Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment. Mater Lett. 2020;261:127091. https://doi.org/10.1016/J.MATLET.2019.127091.
  • 8. Goodarz M, Bahrami SH, Sadighi M, Saber-Samandari S. Low-velocity impact performance of nanofiber-interlayered aramid/epoxy nanocomposites. Compos Part B Eng. 2019;173:106975. https://doi.org/10.1016/J.COMPOSITESB.2019.106975.
  • 9. Wu C, Yang K, Gu Y, Xu J, Ritchie RO, Guan J. Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Compos Part A Appl Sci Manuf. 2019;117:357-68. https://doi.org/10.1016/J.COMPOSITESA.2018.12.003.
  • 10. Shelly D, Nanda T, Mehta R. Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties. Compos Part A Appl Sci Manuf. 2021;145:106371. https://doi.org/10.1016/j.compositesa.2021.106371.
  • 11. Shelly D, Singh K, Nanda T, Mehta R. Addition of nanomer clays to GFRPs for enhanced impact strength and fracture toughness. Mater Res Express. 2018;5:105013. https://doi.org/10.1088/2053-1591/aadb0d.
  • 12. Tang L, He M, Na X, Guan X, Zhang R, Zhang J, et al. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun. 2019;16:5-10. https://doi.org/10.1016/J.COCO.2019.08.007.
  • 13. Shin PS, Kim JH, DeVries KL, Park JM. Manufacturing and qualitative properties of glass fiber/epoxy composite boards with added air bubbles for airborne and solid-borne sound insulation. Compos Sci Technol. 2020;194:108166. https://doi.org/10.1016/J.COMPSCITECH.2020.108166.
  • 14. Nanda T, Sharma G, Mehta R, Shelly D, Singh K. Mechanisms for enhanced impact strength of epoxy based nanocomposites reinforced with silicate platelets. Mater Res Express. 2019;6:065061. https://doi.org/10.1088/2053-1591/ab1023.
  • 15. Garg M, Sharma S, Mehta R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites. Compos Part A Appl Sci Manuf. 2015;76:92-101. https://doi.org/10.1016/j.compositesa.2015.05.012.
  • 16. Zhao Y, Huang Y, Hu W, Guo X, Wang Y, Liu P, et al. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Mater Struct. 2019. https://doi.org/10.1088/1361-665X/aaf3ce.
  • 17. Nayak BA, Shubham, Prusty RK, Ray BC. Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Mater Today Proc. 2020;33:5098-102. https://doi.org/10.1016/j.matpr.2020.02.852.
  • 18. Shelly D, Nanda T, Mehta R. Addition of compatibilized nanoclay to GFRCs for improved izod impact strength and tensile properties. Proc Inst Mech Eng Part L J Mater Des Appl. 2021;235:2022-35. https://doi.org/10.1177/14644207211009923.
  • 19. Nanda T, Singh K, Shelly D, Mehta R. Advancements in multiscale filler reinforced epoxy nanocomposites for improved impact strength: a review. Crit Rev Solid State Mater Sci. 2020. https://doi.org/10.1080/10408436.2020.1777934.
  • 20. Shelly D, Nanda T, Mehta R. Novel epoxy-based glass fiber reinforced composites containing compatibilized para-aramid fibers and silanized nanoclay for improved impact strength. Polym Compos. 2021. https://doi.org/10.1002/pc.26453.
  • 21. Singh K, Nanda T, Mehta R. Addition of nanoclay and compatibilized EPDM rubber for improved impact strength of epoxy glass fiber composites. Compos Part A Appl Sci Manuf. 2017;103:263-71. https://doi.org/10.1016/j.compositesa.2017.10.009.
  • 22. Chen Q, Xiang D, Wang L, Tang Y, Harkin-Jones E, Zhao C, et al. Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing. Compos Part A Appl Sci Manuf. 2018;112:186-96. https://doi.org/10.1016/j.compositesa.2018.06.009.
  • 23. Lv F, Yao D, Wang Y, Wang C, Zhu P, Hong Y. Recycling of waste nylon 6/spandex blended fabrics by melt processing. Compos Part B Eng. 2015;77:232-7. https://doi.org/10.1016/j.compositesb.2015.03.038.
  • 24. Sun J, Xu Y, Chen Y, Liu Y, Leng J. Spandex fiber reinforced shape memory polymer composites and their mechanical properties. Adv Mater Res. 2012;410:370-4. https://doi.org/10.4028/www.scientific.net/AMR.410.370.
  • 25. Vijayalakshmi KA, Karthikeyan N, Vignesh K. Surface modification of spandex fiber using low temperature plasma. Int J Sci Res 2014:116-8.
  • 26. Lei D, Zhang H, Liu N, Zhang Q, Su T. Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles. Nanotechnology. 2021;32:505509.
  • 27. Bashar M, Sundararaj U, Mertiny P. Microstructure and mechanical properties of epoxy hybrid nanocomposites modified with acrylic tri-block-copolymer and layered-silicate nanoclay. Compos Part A Appl Sci Manuf. 2012;43:945-54. https://doi.org/10.1016/j.compositesa.2012.01.010.
  • 28. Owais M, Zhao J, Imani A, Wang G, Zhang H, Zhang Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos Part A Appl Sci Manuf. 2019;117:11-22. https://doi.org/10.1016/j.compositesa.2018.11.006.
  • 29. Vakilifard M, Mahmoodi MJ. Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation. Compos Part B Eng. 2019;167:277-301. https://doi.org/10.1016/j.compositesb.2018.12.045.
  • 30. Cappelli L, Balokas G, Montemurro M, Dau F, Guillaumat L. Multi-scale identification of the elastic properties variability for composite materials through a hybrid optimisation strategy. Compos Part B Eng. 2019;176:107193. https://doi.org/10.1016/j.compositesb.2019.107193.
  • 31. Acarer S, Pir İ, Tufekci M, Turkoğlu Demirkol G, Tufekci N. Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes. Polymers (Basel). 2021. https://doi.org/10.3390/polym13101661.
  • 32. Tufekci M, Genel OE, Tatar A, Tufekci E. Dynamic analysis of composite wind turbine blades as beams: an analytical and numerical study. Vibration. 2020;4:1-15. https://doi.org/10.3390/vibration4010001.
  • 33. Singh K, Nanda T, Mehta R. Processing of polyethylene terephthalate fiber reinforcement to improve compatibility with constituents of GFRP nanocomposites. Mater Manuf Process. 2018;33:165-73. https://doi.org/10.1080/10426914.2017.1291955.
  • 34. Singh K, Nanda T, Mehta R. Compatibilization of polypropylene fibers in epoxy based GFRP/clay nanocomposites for improved impact strength. Compos Part A Appl Sci Manuf. 2017;98:207-17. https://doi.org/10.1016/j.compositesa.2017.03.027.
  • 35. Raturi M, Singh BJ, Shelly D, Singh K, Nanda T, Mehta R. Tensile behaviour and characterization of epoxy-clay-poly (ethylene terephthalate) nanocomposites. Mater Res Express. 2019;6:115014. https://doi.org/10.1088/2053-1591/ab43e9.
  • 36. Ragoubi M, George B, Molina S, Bienaime D, Merlin A, Hiver JM, et al. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos Part A Appl Sci Manuf. 2012;43:675-85. https://doi.org/10.1016/j.compositesa.2011.12.025.
  • 37. Moon SI, Jang J. Role of additional silane coupling agent treatment in oxygen plasma-treated UHMPE fiber/vinylester composites. J Adhes Sci Technol. 2000;14:493-506. https://doi.org/10.1163/156856100742708.
  • 38. Mallick P. Fiber ceinforced composites, materials: manufacturing, and design. 3rd ed. CRC Press; 2007.
  • 39. Sharma B, Chhibber R, Mehta R. Effect of surface treatment of nanoclay on the mechanical properties of epoxy/glass fiber/clay nanocomposites. Compos Interfaces. 2016;23:623-40. https://doi.org/10.1080/09276440.2016.1165522.
  • 40. Asgari M, Abouelmagd A, Sundararaj U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl Clay Sci. 2017;146:439-48. https://doi.org/10.1016/j.clay.2017.06.035.
  • 41. Feiz A, Khosravi H. Multiscale composites based on a nanoclay-enhanced matrix and E-glass chopped strand mat. J Reinf Plast Compos. 2019;38:591-600. https://doi.org/10.1177/0731684419836219.
  • 42. Bruce AN, Lieber D, Hua I, Howarter JA. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers. J Colloid Interface Sci. 2014;419:73-8. https://doi.org/10.1016/j.jcis.2013.12.051.
  • 43. Patel DBH, Mandot AA, Jha PK. Extraction, characterization and application of azadirachta indica leaves for development of hygienic lycra filaments. J Int Acad Res Multidiscip. 2014;393:65.
  • 44. Marjo CE, Gatenby S, Rich AM, Gong B, Chee S. ATR-FTIR as a tool for assessing potential for chemical ageing in Spandex/LycraR/elastane-based fabric collections. Stud Conserv. 2017;62:343-53. https://doi.org/10.1080/00393630.2016.1198868.
  • 45. Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019;4:97-118. https://doi.org/10.17509/ijost.v4i1.15806.
  • 46. Lee HS, Ko JH, Song KS, Choi KH. Segmental and chain orientational behavior of spandex fibers. J Polym Sci Part B Polym Phys. 1997;35:1821-32. https://doi.org/10.1002/(SICI)1099-0488(199708)35:11%3c1821::AID-POLB13%3e3.0.CO;2-A.
  • 47. Vennerberg D, Rueger Z, Kessler MR. Effect of silane structure on the properties of silanized multiwalled carbon nanotube-epoxy nanocomposites. Polymer (Guildf). 2014;55:1854-65. https://doi.org/10.1016/j.polymer.2014.02.018.
  • 48. Sharma B, Chhibber R, Mehta R. Curing studies and mechanical properties of glass fiber reinforced composites based on silanized clay minerals. Appl Clay Sci. 2017;138:89-99. https://doi.org/10.1016/j.clay.2016.12.038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ebafc2fe-740c-4fc3-bcee-6b9324f0d4f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.