PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of isoamyl acetate using protein-coated microcrystals of different lipases

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study was the immobilization of different lipases as protein-coated microcrystals on K2SO4 and their uses in the synthesis of isoamyl acetate in n-hexane medium. The optimum conditions, such as lipase variety, temperature, the initial molar ratio of vinyl acetate/isoamyl alcohol, immobilized lipase amount, and reaction time were determined. The highest conversion was obtained when protein-coated microcrystals of Thermomyces lanuginosus lipase (TLL-PCMCs) was used for the synthesis of isoamyl acetate. The optimum temperature, the initial molar ratio of vinyl acetate/isoamyl alcohol, immobilized lipase amount, and reaction time were determined to be 50 °C, 3.0, 30 mg, and 360 min, respectively. Under the optimized conditions, isoamyl acetate yield was obtained as 95%. TLL-PCMCs retained 90% of their initial activity after five repeat use in the isoamyl acetate synthesis. TLL-PCMCs may be used in the preparation of industrially important aroma compounds due its ease of preparation and efficiency.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wz.
Twórcy
autor
  • Cukurova University, Ceyhan Vocational School, 01330, Adana, Turkey
Bibliografia
  • 1. Belitz, H.-D., Grosch, W. & Schieberle, P. (2004) Aroma compounds. In H.-D. Belitz, W. Grosch & P. Schieberle (Eds.), Food chemistry (pp. 342–408). Heidelberg: Springer Berlin Heidelberg.
  • 2. Sales, A., Paulino, B.N., Pastore, G.M. & Bicas, J.L. (2018). Biogeneration of aroma compounds. Curr. Opin. Food Sci. 19, 77–84. DOI: 10.1016/j.cofs.2018.03.005.
  • 3. Paravisini, L. & Guichard, E. (2016). Interactions between aroma compounds and food matrix. In E. Guichard, C., Salles, M., Morzel & A.-M. Le Bon (Eds.), Flavour from food to perception (p p. 208–234). Chichester, West Sussex; Hoboken, NJ: John Wiley & Sons Inc.
  • 4. Akacha, N.B. & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod. Process. 94, 675–706. DOI: 10.1016/j.fbp.2014.09.011.
  • 5. Saffarionpour, S. & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Eng. Rev. 10, 81–94. DOI: 10.1007/s12393-017-9172-8.
  • 6. Paulino, B.N., Sales, A., Felipe, L., Pastore, G.M., Molina, G. & Bicas, J.L. (2021). Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci. 37, 98–106. DOI: 10.1016/j.cofs.2020.09.010.
  • 7. Srivastava, S., Modak, J. & Giridhar, M. (2002). Enzymatic synthesis of flavors in supercritical carbon dioxide. Ind. Eng. Chem. Res. 41, 1940–1945. DOI: 10.1021/ie010651j.
  • 8. Nongonierma, A., Voilley, A., Cayot, P., Le Quéré, J.-L. & Springett, M. (2006). Mechanisms of extraction of aroma compounds from foods, using adsorbents. Effect of various parameters. Food Rev. Int. 22, 51–94. DOI: 10.1080/87559120500379951.
  • 9. Castro-Muñoz, R. (2019). Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 253, 27–39. DOI: 10.1016/j.jfoodeng.2019.02.013.
  • 10. Lomelí-Martín, A., Martínez, L.M., Welti-Chanes, J. & Escobedo-Avellaneda, Z. (2021). Induced changes in aroma compounds of foods treated with high hydrostatic pressure: A review. Foods. 10, 878. DOI: 10.3390/foods10040878.
  • 11. Mortzfeld, F.B., Hashem, C., Vranková., K., Winkler, M. & Rudroff, F. (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol. J. 15, 2000064. DOI: 10.1002/biot.202000064.
  • 12. Dias, A.L.B., Hatami, T., Martínez, J. & Ciftci, O.N. (2020). Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2. J. Supercrit. Fluids. 164, 104917. DOI: 10.1016/j.supflu.2020.104917.
  • 13. Dudu, A.I., Lăcătuş, M.A., Bencze, L.C., Paizs, C. & Toşa, M.I. (2021). Green process for the enzymatic synthesis of aroma compounds mediated by lipases entrapped in tailored sol–gel matrices. ACS Sustainable Chem. Eng. 9, 5461–5469. DOI: 10.1021/acssuschemeng.1c00965.
  • 14. Yildirim, D. & Tükel, S.S. (2013). Immobilized Pseudomonas sp. lipase: A powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem. 48, 819–830. DOI: 10.1016/j.procbio.2013.04.019.
  • 15. Kapoor, M. & Gupta, M.N. (2012). Lipase promiscuity and its biochemical applications. Process Biochem. 47, 555–569. DOI: 10.1016/j.procbio.2012.01.011.
  • 16. Yang, T.-S., Liu, T.-T. & Liu, H.-I. (2017). Effects of aroma compounds and lipid composition on release of functional substances encapsulated in nanostructured lipid carriers lipolyzed by lipase. Food Hydrocolloids. 62, 280–287. DOI: 10.1016/j.foodhyd.2016.08.019.
  • 17. Salgado, C.A., dos Santos, C.I.A. & Vanetti, M.C.D. (2022). Microbial lipases: Propitious biocatalysts for the food industry. Food Biosci. 45, 101509. DOI: 10.1016/j.fbio.2021.101509.
  • 18. Dias, A.L.B., dos Santos, P. & Martínez, J. (2018). Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J. CO2 Util. 23, 159–178. DOI: 10.1016/j.jcou.2017.11.011.
  • 19. Mehta, A., Grover, C., Bhardwaj, K.K & Gupta, R. (2020). Application of lipase purified from Aspergillus fumigatus in the syntheses of ethyl acetate and ethyl lactate. J. Oleo Sci. 69, 23–29. DOI: 10.5650/jos.ess19202.
  • 20. Yildirim, D., Baran, E., Ates, S., Yazici, B. & Tukel, S.S. (2019). Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatal. Biotransform. 37, 210–223. DOI: 10.1080/10242422.2018.1530766.
  • 21. Ozyilmaz, G. & Yağız, E. (2017). Comparison of the performance of entrapped and covalently immobilized lipase in the synthesis of pear flavor. Turk. J. Biochem. 42, 339–347. DOI: 10.1515/tjb-2016-0110.
  • 22. Patel, V., Gajera, H., Gupta, A., Manocha, L. & Madamwar D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 95, 62–70. DOI: 10.1016/j.bej.2014.12.007.
  • 23. Kurtovic, I., Marshall, S.N., Cleaver, H.L. & Miller, M.R. (2016). The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chem. 199, 323–329. DOI: 10.1016/j.foodchem.2015.12.027.
  • 24. Castiglioni, G.Z., Bettio, G., Matte, C.R., Jacques, R.A., Dos Santos Polidoro, A., Rosa, C.A. & Ayub, M.A.Z. (2020). Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors. Bioprocess Biosyst. Eng. 43, 1391–1402. DOI: 10.1007/s00449-020-02334-4.
  • 25. Kreiner, M. & Parker, M.C. (2005). Protein-coated microcrystals for use in organic solvents: Application to oxidoreductases. Biotechnol. Lett. 27, 1571–1577. DOI: 10.1007/s10529-005-1800-3.
  • 26. Yildirim, D., Toprak, A., Alagöz, D. & Tukel, S.S. (2019). Protein-coated microcrystals of Prunus armeniaca hydroxynitrile lyase: an effective and recyclable biocatalyst for synthesis of (R)-mandelonitrile. Chem. Pap. 73, 185–193. DOI: 10.1007/s11696-018-0577-5.
  • 27. Monteiro, R.R.C., dos Santos, J.C.S., Alcántara, A.R. & Fernandez-Lafuente R. (2020). Enzyme-coated micro-crystals: An almost forgotten but very simple and elegant immobilization strategy. Catalysts. 10, 891. DOI: 10.3390/catal10080891.
  • 28. Fehér, E., Illeová, V., Kelemen-Horváth, I., Bélafi-Bakó, K., Polakovič, M. & Gubicza, L. (2008). Enzymatic production of isoamyl acetate in an ionic liquid–alcohol biphasic system. J. Mol. Catal. B: Enzym. 50, 28–32. DOI: 10.1016/j.molcatb.2007.09.019.
  • 29. Zare, M., Golmakani, M.-T. & Niakousari, M. (2019). Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques. LWT. 2019, 101, 214–219. DOI: 10.1016/j.lwt.2018.10.098.
  • 30. Zare, M., Golmakani, M.-T. & Sardarian, A. (2020). Green synthesis of banana flavor using different catalysts: a comparative study of different methods. Green Chem. Lett. Rev. 13, 83–92. DOI: 10.1080/17518253.2020.1737739.
  • 31. Quilter, M.G., Hurley, J.C., Lynch, F.J. & Murphy, M.G. (2003). The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J. Inst. Brew. 109, 34–40. DOI: 10.1002/j.2050-0416.2003.tb00591.x.
  • 32. Ando, H., Kurata, A. & Kishimoto, N. (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880. DOI: 10.1111/jam.12764.
  • 33. Kanwar, S.S., Sharma, C., Verma, M.L., Chauhan, S., Chimni, S.S. & Chauhan, G.S. (2008). Short-chain ester synthesis by transesterification employing poly (MAc-co-DMA-cl-MBAm) hydrogel-bound lipase of Bacillus coagulans MTCC-6375. J. Appl. Polym. Sci. 109, 1063–1071. DOI: 10.1002/app.25320.
  • 34. Yildirim, D., Tükel, S.S., Alptekin, Ö. & Alagöz, D. (2014). Optimization of immobilization conditions of Mucor miehei lipase onto Florisil via polysuccinimide spacer arm using response surface methodology and application of immobilized lipase in asymmetric acylation of 2-amino-1-phenylethanols. J. Mol. Catal. B: Enzym. 100, 91–103. DOI: 10.1016/j.molcatb.2013.12.003.
  • 35. Yadav, G.D. & Borkar, I.V. (2009). Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Ind. Eng. Chem. Res. 48, 7915–7922. DOI: 10.1021/ie800591c.
  • 36. Cai, X., Wang, W., Lin, L., He, D., Shen, Y., Wei, W. & Wei, D. (2017). Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal. Lett. 147, 946–952. DOI: 10.1007/s10562-017-1994-8.
  • 37. Yadav, G.D. & Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem. 47, 496–502. DOI: 10.1016/j.procbio.2011.12.008.
  • 38. Ozyilmaz, G. & Gezer, E. (2010). Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. J. Mol. Catal. B: Enzym. 64, 140–145. DOI: 10.1016/j.molcatb.2009.04.013.
  • 39. Hari, Krishna, S., Divakar, S., Prapulla., S.G. & Karanth, N.G. (2001). Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J. Biotechnol. 87, 193–201. DOI: 10.1016/S0168-1656(00)00432-6.
  • 40. López-Fernández, J., Benaiges, M.D., Sebastian, X., Bueno, J.M. & Valero, F. (2022). Producing natural flavours from isoamyl alcohol and fusel oil by using immobilised Rhizopus oryzae lipase. Catalysts. 12, 639. DOI: 10.3390/catal12060639.
  • 41. de Oliveira, T.P., Santos, M.P.F., Brito, M.J.P. & Veloso, C.M. (2022). Incorporation of metallic particles in activated carbon used in lipase immobilization for production of isoamyl acetate. J. Chem. Technol. Biotechnol. 97, 1736–1746. DOI: 10.1002/jctb.7043.
  • 42. Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. (2006). Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794. DOI: 10.1016/j.enzmictec.2005.08.011.
  • 43. Padilha, G.S., Tambourgi, E.B. & Alegre, R.M. (2018). Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chem. Eng. Commun. 205, 23–33. DOI: 10.1080/00986445.2017.1370707.
  • 44. Romero, M.D., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H.S. (2005). Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48. DOI: 10.1016/j.enzmictec.2004.12.033.
  • 45. Güvenç, A., Kapucu, N. & Mehmetoğlu, Ü. (2002). The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem. 38, 379–386. DOI: 10.1016/S0032-9592(02)00099-7.
  • 46. Wolfson, A., Atyya, A., Dlugy, C. & Tavor, D. (2010). Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B. Bioprocess Biosyst. Eng. 33, 363–366. DOI: 10.1007/s00449-009-0333-x.
  • 47. Nyari, N., Paulazzi, A., Zamadei, R., Steffens, C., Zabot, G.L., Tres, M.V., Zeni, J., Venquiaruto, L., Dallago, R.M. (2018). Synthesis of isoamyl acetate by ultrasonic system using Candida antarctica lipase B immobilized in polyurethane. J. Food Process Eng. 41, e12812. DOI: 10.1111/jfpe.12812.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eba8bf40-d599-4e39-ad45-fd3093b2ae79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.