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The extrapolation of the electric field is studied theoretically both in frequency domain and time
domain. Combining Gauss’s law with the approximation method in engineering, two new formulas
for the scattering field calculation are derived from different logical ideas based on Stratton–Chu
formula. The consistency property of the derived formulas is investigated, and the third formula
for the scattering field calculation is further obtained. Finally, the time-domain extrapolation is dis-
cussed based on the formulas, followed by a simple numerical example. The results obtained are
characterized by a simple form and intuitive physical meaning, and are helpful to calculate certain
engineering problems.
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1. Introduction

Many researches on the field extrapolation have been conducted by using numerical
methods [1–5]. However, theoretical research on this topic is relatively rare, except
STRATTON and CHU who derived the famous equations named after their names [6, 7],
i.e., the Stratton–Chu formula. Figure 1 presents the schematic diagram of the Stratton
–Chu formula to calculate the far field from a scattering object, in which the far electric
field is calculated from: 
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where S is a closed curved surface surrounding the scatterer; E and H represent the
electromagnetic fields on the curved surface. Equation (1) is the general formula for
the calculation of the scattering field, which thus seems too complicated when dealing
with specific computation, such as the vector operations and the closed surface inte-
gration. Obviously, such formula form may be not convenient for engineering appli-
cations. To solve this problem, the physical optics (PO) method was proposed based
on the Stratton–Chu formula [8–10]. This method requires integral calculation based
on the surface of the object and is mainly applied to metal targets, which therefore lim-
its the universality of the method. In terms of current research status, it is still necessary
to further study the scattering principle so as to develop a more concise and versatile
scattering analysis method.

According to Gauss’s law, the integral of  Eq. (1) over the closed surface S is trans-
formed into an integral over an infinite plane. Considering the fact that engineering
calculations allow certain calculation errors, so the infinite plane integral becomes
an integral over a finite plane by using approximation methods. The significance of
this integral transformation is that the closed-surface integral form can be converted
into a finite plane integral, which greatly reduces the computational complexity. Then,
two new expressions are derived from Eq. (1) by using different methods; the consist-
ency property between the expressions is discussed. Finally, the scattering field com-
putation in time domain is discussed as well. The results obtained are characterized
by simple form and intuitive physical meaning. The consistency property and numer-
ical example confirm the correctness of the results in the paper.

2. Method

2.1. Integral domain transformation

The first step is to transform the integral domain of  Eq. (1), as shown in Fig. 2. Overall,
Fig. 2a contains three surfaces: (1) a closed curved surface S surrounding the scatterer;
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Fig. 1. Schematic of Stratton–Chu formula to calculate the far field.
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(2) an infinite plane S''; and (3) a finite plane S', which is a part of the infinite plane S''.
When calculating the far scattering fields Es, an appropriate selection of the three sur-
faces can simplify the integral of Eq. (1) into an integral over the finite plane S' ; and
thus new equations to calculate the scattering fields result. The simplification process
is presented in detail below, and all parameters are described in Cartesian coordinate
system.

As shown in Fig. 2, the infinite plane S''  is located at the outside of the closed curved
surface S, whose normal unit vector  has the same direction as the unit vector  in
the scattering observation direction, i.e.,  It can be inferred from Gauss’s law
that the contribution of the scattering fields through the closed surface S to the obser-
vation point P(r) is equivalent to that through the infinite plane S''. Therefore, when
calculating the scattering fields at the observation point P(r), the integral of Eq. (1)
over the closed surface S can be equivalent to the integral over the infinite plane S''.
Theoretically speaking, the scattering fields from scatterer can be full of entire S''.
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Fig. 2. Integral domain transformation and parameter setting. (a) Integral domain transformation, and
(b) scattering parameter setting.
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However, considering from the engineering point of view, the main scattering contri-
bution to the observation point P(r) comes from the finite surface S'. Thus, the integral
of Eq. (1) over the infinite plane S'' is actually approximated to the integral over the
finite plane S'. It is obvious that S' is related to the requirement of the calculation ac-
curacy. Based on this idea, the Eq. (1) can be further simplified.

To facilitate the subsequent discussion, the result of the Green’s function G from
the operators  and  in Eq. (1) should be first determined, where they represent the
spatial differential operator at the scattering observation point and the electromagnetic
source point, respectively. As shown in Fig. 2b, when a plane wave is incident on the
scatterer, there are:

(2)

Considering the scattering far field, the following relationship exists:

r >> 

Then, Eq. (2) can be simplified as:

(3)

where r2 and r correspond to the Coulomb field and the scattering field, respectively.
When considering merely the far-field scattering, the Coulomb field in Eq. (3) can be
ignored. So the first-order approximation of Eq. (3) is obtained:

It should be noted that, the incident wave vector ki is determined by the incident
field at the point r', since the scattering calculation is based on the electromagnetic
fields on the plane S'. Finally, according to r0 = |r – r' |, the following relation results:

(4)

Substituting Eqs. (3) and (4) into Eq. (1) and using appropriate mathematical methods,
a more concise formula to calculate the scattering fields can be derived.
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2.2. Derivation of the new formulas 

2.2.1. Equation of the first kind

Firstly, preliminary simplification is given to Eq. (1) based on the closed surface S in
Fig. 2. Substituting Eqs. (3) and (4) into Eq. (1), we can obtain:

(5)

Considering the plane incident wave in free space, the relationship between electric
field and magnetic field is determined by:

(6)

where Z0 is the wave impedance in free space. Substituting Eq. (6) into Eq. (5), then
equation (5) can be converted as:
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(7)

The integral of the Eq. (7) with respect to the closed surface S can be converted
into the integral over the infinite plane S''. As shown in Fig. 2, since the plane S'' is
perpendicular to the observation direction of the scattering fields, the relationship

 holds. Eliminating the similar items, equation (7) is finally reduced to:

(8a)

This equation is equivalent to:

(8b)

where  is the unit wave vector of the scattering waves arriving at the surface S''
from the scatterer,  represents the unit vector of the scattering observation direction,
and r' represents the location vector of any point on the integral plane S''.

Finally, according to the method given in Section 2.1, the integral of Eq. (8) over
the infinite plane S'' can be transformed into the integral over the finite plane S', by
changing the integral domain. This result shows that, as long as the electric fields at
the finite plane S' is determined, the scattering far field can be obtained as well.

2.2.2. Equation of the second kind

Considering the far-field scattering, the scattering contribution mainly comes from
plane S' of limited area. So the electric field on plane S' can be decomposed in both ver-
tical and parallel directions. From a physical point of view, the field component vertical
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to the surface S' is approximately no contribution to the backscattering since 
The main contribution comes from the field component parallel to the plane S'. This
physical characteristic means:

(9)

Based on the integral domain transformation, substituting Eq. (9) into Eq. (1) yields:

(10)

Then, according to Green’s function, we can obtain:

(11)

Substituting Eq. (6) into Eq. (11), the later equation can be simplified:

(12a)

The above derivation process is based on the relationship  which can be used
again to rewritten Eq. (12a) as:
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If the vertical field component on the plane S' is considered in the derivation of
Eq. (12), equation (8) can also be derived. In addition, combined with the physical
characteristics of backscattering, Eq. (8) can be derived directly from Eq. (12) as well,
which is discussed next.

2.3. Discussion on the consistency of the derived equations

Taking Eq. (12a) as an example, it can be further changed as:

(13)

To physically show the relationship between Eqs. (12) and (8), the electric fields
on the surface S' are decomposed in the vertical and parallel directions:

(14)
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Obviously, the field component vertical to the plane S' has approximately no contri-
bution to the backscattering; and considering the scattering contribution of each com-
ponent, the following relationships result:

(16)

Substituting Eq. (16) into Eq. (15), the following relationship can be obtained:

This relationship indicates the equivalence between Eqs. (8) and (12). The significance
of this conclusion is that different approaches arriving at the same result can confirm
the correctness of the result. In addition, further derivation based on Eq. (8) can be con-
ducted:

(17)

Substituting Eq. (16) into Eq. (17), the latter is simplified as: 
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which is equivalent to: 

(18b)

Compared with Eq. (1), the physical meaning of Eq. (18) is more obvious and intu-
itive. This equation shows that, if the incident direction  of the scattering wave is
more consistent with the direction  of the scattering observation, the scattering effect
at the observation point is stronger. Thus, according to Eq. (18), two extreme scattering
cases result: when the direction of the scattering wave coincides with the direction of
the scattering observation, namely  the scattering effect is the strongest
case; conversely, if they are in the opposite direction, namely  the scat-
tering effect is zero. Obviously, the results reflect the physical meaning of the electro-
magnetic scattering.

2.4. Discussion on the extrapolation in the time domain

Using exp(–jωt) as the time harmonic factor, Eq. (18a) can be organized as follows:
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The far-field scattering formula in the time domain can be obtained by performing the
inverse Fourier transformation on Eq. (19):
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According to the vector relationship  as shown in Fig. 2, another form of
Eq. (20a) is available:

(20b)

The derivation above shows that Eq. (1) can evolve into Eqs. (8), (12) and (18) three
more concise forms, whose time-domain calculation can be easily obtained. One point
worthy of note is that all derivations are based on the plane S'' (or S' ) vertical to the
scattering direction, which is the precondition for deriving these three equations.
Therefore, when the observation direction of the backscattering is changed, the orien-
tation of the plane S'' should be changed as well. For example, when calculating the
bistatic RCS, the plane S'' should be rotated as the observation point changes.

3. Example

A numerical example is given to further illustrate the validity of the derived result in
this paper. As shown in Fig. 3a, an ideal metal plate whose width and length are both

n̂ k̂s=

Es r t  1
4πcr

-----------------
 E r' t

1
c

----- r n̂ r'– – 
 

t
------------------------------------------------------------------- 1 n̂ k̂i r ' +

 
 
 
 
 

ds'

S'

=

Ideal metal plate

Incident plane wave

S'

EsEi

 f  ( )ds
S 

E rFree space

0.0 0.3 0.6 0.9 1.2

-20

0

20

40

60

f /(GHz)

PO 
Eq. (18)

Fig. 3. Numerical example. (a) The schematic of the numerical model. (b) Characteristics of the back-
scattering.
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5 m is selected as the scatterer. The Gaussian pulse incident wave illuminates the metal
plate vertically. Figure 3b shows the monostatic RCS of the plate resulting from dif-
ferent methods, which confirms the correctness of the algorithm as well.

4. Conclusion

Based on the Stratton–Chu formula, the electric field extrapolation both in time domain
and frequency domain is studied. The derivation process shows that the calculation ac-
curacy of the formulas obtained is determined by the area of the integral plane, namely,
the larger the area of the finite plane S', the more accurate the calculation. The con-
sistency property of the results obtained from different derivation methods confirms
the correctness of the results. In addition, numerical example verifies the correctness
as well. Compared with the Stratton–Chu formula, the results in this paper are char-
acterized by simple form and intuitive physical meaning; and it is easy to obtain the
extrapolation formula in the time domain. More importantly, since the transformation
method between the closed surface S, the infinite plane S'', and the finite plane S' is
built, which is more convenient for the analysis of complex problems.
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