PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of time delay singularly perturbed parabolic differential equations involving both small positive and negative space shifts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A time dependent singularly perturbed differential-difference equation is considered. The problem involves time delay and general small space shift terms. Taylor series approximation is used to expand the space shift term. A robust numerical scheme based on the backward Euler scheme for the time and classical upwind scheme for space is proposed. The convergence analysis is carried out. It is observed that the proposed scheme converges almost first order up to a logarithm term and optimal first order in space on the Shishkin and Bakhvalov-Shishkin mesh, respectively. Numerical results confirm the efficiency of the proposed scheme, which are in agreement with the theoretical bounds.
Wydawca
Rocznik
Strony
121--134
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
  • Faculty of Science and Technology, The ICFAI University Tripura, Kamalghat, West Tripura, Tripura 799210, India
  • Department of Mathematics, National Institute of Technology Rourkela, Rourkela, 769008, India
Bibliografia
  • [1] A. R. Ansari, S. A. Bakr and G. I. Shishkin, A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math. 205 (2007), no. 1, 552-566.
  • [2] K. Bansal, P. Rai and K. K. Sharma, Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst. 25 (2017), no. 2, 327-346.
  • [3] K. Bansal and K. K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms 75 (2017), no. 1, 113-145.
  • [4] W. Cheng, R. Temam and X. Wang, New approximation algorithms for a class of partial differential equations displaying boundary layer behavior, Methods Appl. Anal. 7 (2000), no. 2, 363-390.
  • [5] C. Clavero, J. L. Gracia and J. C. Jorge, High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers, Numer. Methods Partial Differential Equations 21 (2005), no. 1, 148-169.
  • [6] C. Clavero, J. L. Gracia and M. Stynes, A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems, J. Comput. Appl. Math. 235 (2011), no. 17, 5240-5248.
  • [7] L. Govindarao and J. Mohapatra, A second-order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput. 26 (2019), no. 2, 420-444.
  • [8] S. Gowrisankar and S. Natesan, ε-uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations, Int. J. Comput. Math. 94 (2017), no. 5, 902-921.
  • [9] V. Gupta, M. K. Kadalbajoo and R. K. Dubey, A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput. Math. 96 (2019), no. 3, 474-499.
  • [10] M. K. Kadalbajoo and A. Awasthi, A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension, Appl. Math. Comput. 183 (2006), no. 1, 42-60.
  • [11] R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), no. 144, 1025-1039.
  • [12] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.
  • [13] D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Appl. Math. Model. 35 (2011), no. 6, 2805-2819.
  • [14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 23, American Mathematical Society, Providence, 1968.
  • [15] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math. 42 (1982), no. 3, 502-531.
  • [16] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. III. Turning point problems, SIAM J. Appl. Math. 45 (1985), no. 5, 708-734.
  • [17] T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Math. 1985, Springer, Berlin, 2010.
  • [18] X. Lu, Combined iterative methods for numerical solutions of parabolic problems with time delays, Appl. Math. Comput. 89 (1998), no. 1-3, 213-224.
  • [19] K. Mukherjee and S. Natesan, Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems, Computing 92 (2011), no. 1, 1-32.
  • [20] M. Musila and P. Lansky, Generalized Stein’s model for anatomically complex neurons, Biosys. 25 (1991), no. 3, 179-191.
  • [21] P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002), no. 1, 73-94.
  • [22] V. P. Ramesh and M. K. Kadalbajoo, Upwind and midpoint upwind difference methods for time-dependent differential difference equations and layer behavior, Appl. Math. Comput. 202 (2008), no. 2, 453-471.
  • [23] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Springer Ser. Comput. Math. 24, Springer, Berlin, 2008.
  • [24] G. I. Shishkin and L. P. Shishkina, Difference Methods for Singular Perturbation Problems, CRC Press, Boca Raton, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eba2bc98-fb97-47a7-be64-c50afdab5d39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.