122 DOBRZANSKI and ZABIEROWSKI: THE COMPARISON OF NATIVE APPS PERFORMANCE ON I0S (SWIFT) AND ANDROID ...

The Comparison of Native Apps Performance
on 10S (Swift) and Android

with Cross-platform Application — Xamarin
Student project

Dawid Dobrzanski, and Wojciech Zabierowski

Abstract—The article describes comparison of two
technologies used for creating mobile applications — cross-
platform Xamarin and native for Android and iOS. The base
constitutes results of appropriate tests executed by application
created for that purpose.

Index Terms—Java, C#, Swift, Xamarin, Android, iOS, mobile
apps, performance tests

I. INTRODUCTION

NOWADAYS, there are more and more mobile devices and,
consequently, mobile applications. There are many
technologies which can be used for creating them. The most
popular techniques are native technologies allowing making
application on dedicated platform (for example Android, iOS,
Windows 10 Mobile). Otherwise, there also exist two types of
multiplatform solutions. First of them uses web technologies
(HTML, CSS, JavaScript) but these applications have limited
possibilities and their performance is much worse than the native
ones. The second solution is Xamarin platform — it allows to
create cross-platform applications which functionality and
performance are comparable to native counterpart. We have to
take into consideration fact, that Xamarin is intended for
creating one, instead of two applications. It may be efficient
solution for companies because making one application takes
less time. Moreover, developers have to know only one
technology while they use Xamarin what makes creating
applications easier. These two facts imply cutting costs for
company. This article is about comparing efficiency of Xamarin
and native applications on Android and iOS operating systems.
For that case, five tests which check app’s performance by
device components’ high usage (for instance CPU, memory)
were prepared.

II. USED TECHNOLOGIES

A. Java

Java is an object-oriented programming language and
platform used for creating software. Oracle stands for Java’s
development. It is all-purpose technology which allows to make
various types of application (for instance web application or
mobile application). Java has been the most popular
programming language for many years because Java
applications may be run on many types of operating systems
(for example: Windows, macOS, Linux distributions).

D. Dobrzanski and W Zabierowski are with the Department

of Microelectronics and Computer Science, Lodz University of Technology,
Lodz, Poland (e-mail: wojtekz@dmecs.pl).

ISSN 2080-8755

During compiling, the source code is being converted to the
bytecode. Subsequently, Java virtual machine (JVM) runs the
application.

Java and Android SDK enable to create native Android
mobile applications. In particular, Android SDK contains:

e devices’ emulator,

e Dalvik Debug Monitor System (debugger),
e Android Debug Bridge (adb),

e Traceview (application’s logs).

B. Swift

Swift is a programming language created by Apple. By
using it, we can make native applications for i10S, macOS and
watchOS. Swift’s main purpose is to trade up outdated
Objective-C language which had been used for creating Apple’s
native applications up to year 2014. That technology is still
developing — this year, Swift 4 was presented. Unfortunately, it
sometimes comes across incompatibility with previous
versions. However, Swift is the most promising tool for making
iOS native applications and its popularity is increasing
nowadays. Swift minimizes developer mistakes and allows to
provide application stability and safety. These applications are
built by using Low Level Virtual Machine (LLVM) compiler
which was created in C++ programming language. Swift is
available while using Xcode 6+ version — it coincides with date
of i0S 8 premiere.

C. C#

C# is an object-oriented programming language, it is
component of .NET platform. C# main purpose is to create
applications collaborating with Microsoft platforms.
Application written in this language is processing to Common
Intermediate Language (CIL) during compilation and, during
execution, it is being compiled to processor native language. In
this article, C# found its usage in creating multiplatform
application (Xamarin.Forms).

D. Xamarin

Xamarin is platform which allows to create multiplatform
applications intended for a couple of mobile operating systems.
Since 2016, Xamarin has belonged to Microsoft. Intellection of
this platform is to make one application instead of two for each
of platforms. The code written in C# is mapped for native
platform. Due to that, cross-platform applications are quite

Copyright © 2017 by Department of Microelectronics & Computer Science, Lodz University of Technology

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. §, NO. 3,2017 123

similar to dedicated ones. We can distinguish two types of
multiplatform applications creating methods by using Xamarin:

e Xamarin.Native — in these applications logic layer is
common but user interface (Ul) is different for each of
platforms;

e Xamarin.Forms — except for shared applications logic
layer, interface is also common what allows to gain greater
shared code rate.

In Xamarin.Forms code can be shared in two ways:

e Portable Class Library (PCL) — solutions made by it have
two dedicated projects for each of platforms and one shared
project — portable which is being included to dedicated
projects while solution is being compiled.

e Shared Project — appropriate code blocks — platform-
determined condition.

N #if __ANDROID__

b // Android - specific code
e} #endif

LY #if _ i0s_

4 // 1i0S - specific code

[} #endif

Figure 1. Code sharing by using Shared Project (source: https://csharp-
dev.pl/2017/03/3 1/xamarin-forms-okiem-poczatkujacego-wprowadzenie)

E. XML/XAML

XML is an universal tag language. It presents data as
structure. It is not depended on any platform what implies that
it can be used between different operating systems. XML is
used in many technologic spaces. Except for presenting data it
has usage in communication protocols which specialize in
exchanging data (for example SOAP — Simple Object Access
Protocol). In this article XML was used for creating interface in
native application for Android.

XAML derives from XML. It is used for describing user
interfaces on Microsoft platforms (for example: Windows
Presentation Foundation (WPF). In this article XAML was used
for creating user interface in cross-platform app in Xamarin.

111 USED ToOLS
A. Xcode
Xcode 1is integrated development environment (IDE)
created by Apple. It contains everything what is necessary to
develop applications intended for computers, smartphones,
tablets and smartwatches with Apple operating systems. That
tool is available for free from official app store. Except for
applications source code, Xcode allows to create user interface
and possibility of debugging or later testing created applications
on virtual emulators. Xcode supports developing in Objective-
C and Swift programming languages. In this article, it was used
with dependency manager — CocoaPods.

B. Microsoft Visual Studio

Microsoft Visual Studio is an environment dedicated to
Microsoft platforms. It was created also by Microsoft.
It allows to creating console applications and applications
having user interface. By using that tool, we can create
applications intended for platforms like Windows,
Windows 10 Mobile, Windows CE, XBOX console or Azure
(Microsoft Cloud). Languages which we can use with that tool

are, for instance, C#, Visual Basic, C++ and JavaScript. It is not
difficult to configure that tool to work with Android and iOS
SDK. Due to that it allows to use its embedded emulators.
Otherwise, it has graphic manager — NuGet intended for
managing extensions.

C. Android Studio

Android Studio is an environment which allows to create
native applications intended for Android platform. That tool is
based on IntelliJ and due to it we can write in Java. It is quite
new tool because it was presented in 2013. It replaced Eclipse
which had been default tool before. Now, Android Studio is a
standard because its main purpose is to make faster and easier
process of creating mobile applications. What is more, it is
available at large scale — we can install it on operating systems
like Windows, macOS or Linux. Applications made by using
Android Studio can be debugged and their interface can be
tested dependently on resolution and screen orientation.
Applications are being built by usage of Gradle tool which also
allows to add extensions.

IV. MOBILE APPLICATIONS AND TESTS
COMPARING THEIR PERFORMANCE
For project needs, there were created three mobile
applications which performance was comparing by five tests.
The results of that tests will be presented in the next section.
Below you can see short description of all used apps.
Native application dedicated to Android platform:

o Logic layer was created by Java language;

e User interface was created by XML;

e Android Studio was IDE used for programming;

e Target platform, on which application was prepared, is
Android 7.1 Nougat (API 25);

e API 19 (4.4 KitKat) is minimal SDK necessary to run
application;

e Gradle was used for extensions managing.

Native application dedicated to iOS platform:

e Xcode and Swift 3 were used for interface and logic layer
creating;

e Application was made especially for iOS 10 but it can also
work on previous versions and iOS 11 which, at this
moment, is in beta tests.

Cross-platform application:

e [t can be run on iOS and Android;

o Logic layer was created by object-oriented language — C#;

e User interfaces was created by XAML;

e Visual Studio (Community Edition) is tool which was used
for programming in Xamarin.

Moreover:

e These applications are available on smartphones and tablets;

e Internet connection is essential to correct applications
running;

o After tests, applications send request with results to
appropriate server where data is stored in database and,
furthermore, it is analyzed;

e FEach of devices has its own unique id what allows to know
what results we should compare with each other.

124 DOBRZANSKI and ZABIEROWSKI: THE COMPARISON OF NATIVE APPS PERFORMANCE ON I0S (SWIFT) AND ANDROID ...

Tests prepared for applications performance comparing:

e Database operations. In that case, database based on SQLite
engine was used. There was created ‘Number’ table which
rows equal to values taken from mathematic operations
(factorial for instance). Due to that, amount of inserting data
to table operations is 3000. Afterwards, select operation is
being performed. The same situation is with more than 2000
update and delete operations. At the end, the table is
dropped and connection with database is made closed.

e Data sorting. For that test, bubble sort algorithm is used. It
means that two consecutive items in sorting set are being
compared. If appropriate items sequence is wrong, it is
being changed. The algorithm ends when there is no items
which sequence is needed to be changed. In this way, array
with 50 000 items was being tested.

void bubbleSort{int[] numbershrray)} {
Log.d("Test", "Bubble sorting algorithm - start");
int arrayCount = numbersArray.length;
for (int i = (;i <= arrayCount; i#+} {
for (int j = 1; j <= arrayCount - 2; j++) {
if (numbersArray[j-1] > numbershArray[jl) {
int largerValue = numbershArray[j-1];

numbersArray[j-1] = numbersArrayl[jl;

numbersArray[j] = largerValue;

}
Log.d("Test", "Bubble sorting algorithm - end"};
Figure 2. Bubble sorting algorithm - Java.

func bubbleSort (numbersArray: inout[Int]) {
NSLog("Bubble sorting algorithm - start")

let arrayCount = numbersArray.count

for i in 0 ... arrayCount {
for j§ in 1 ... arrayCount - 2 {
if (numbersArray[j-1] > numbersaArray[jl} {

let largerValue = numbersArray[j-1]

numbersarray[j=1]1 = numbershArray[j]
numbersArray[j] = largerValue

}
}
NSLog ("Bubble sorting algorithm - end"}

Figure 3. Bubble sort algorithm - Swift.

void bubbleSort{int[] numbersArray)

{
Debug.WriteLine ("Bubble sorting algorithm - start");
int arrayCount = numbersArray.Count();

for (int i = 0; i <= arrayCount; i++)
{
for (int § = 1; j <= arrayCount - 2; j++)
{
if (numbersArray[j - 1] > numbersArray[jl)}

{
int largerValue = numbersArray[j - 1];

numbersArray[j - 1] = numbersArray[jl:
numbersArray[jl = largervValue;
1

Debug.WriteLine ("Bubble sorting algorithm - end");
Figure 4. Bubble sort algorithm — C#.

e File reading and cryptographic algorithms. Tested file is
built of more than 3000 rows, where each row is being
encrypted by MDS5, SHA1, SHA256, SHAS512 algorithms.
In case of used algorithm, encrypted sequence measure
between 128 and 512 bits of length.

e Applying effects to picture. Downloaded image with
4000x4000 resolution is embedded in appropriate container
(for example ImageView in Android). Then, three effects
are applied on picture: gray scale, Gaussian blur and 180
degree rotation. After tests, modified image is embedded in
container again.

o Interface test. It tests interface performance by refreshing
data operation. There were used three items: label, text field
and button. Afterwards, its values are being changed 10 000
times what finally equals to 30 000 operations.

The purpose of that tests was to judge if multiplatform
solution — Xamarin.Forms — is effective against native
solutions. It allows to answer question if that technology is
worth the interest.

V. APPLICATION COMPARISON
A. Technical issues

Each of applications was created by different programming
language and tools. Due to that fact, it was impossible to create
them by the same way. Each of platforms has advantages and
disadvantages.

Managing extended plugins enlarging functionality is
appropriate example. During Android programming and
creating application in Xamarin, developer may use built-in
managers. In case of native application for i0S, Xcode allows
to add libraries manually what is not comfortable at all. But
there exists CocoaPods — external manager collaborating with
Apple IDE. It means that we just have to configure
dependencies — pods — in dedicated file called Podfile. Then,
install them executing only one command.

Graphic interfaces was also created by another way. In case
of native applications, developer could use graphic editors. Due
to that, he could drag items on application screen. Live preview
was also available, the same with editing by XML on Android.
Both platforms has different view at items ordering. In Android,
items are part of bigger layouts. In i0S, items are
accommodating by constraints. In Xamarin it looks completely
different than in previous ones. Visual Studio allows only to
interfaces text editing what implies that process is much time-
consuming. Developer can use just XAML language and view
of application screen. It is also important to mention that
Xamarin has many constraints when comparing with native
solutions. An appropriate example constitutes round button
with “START” caption — it requires custom renders to relevant
displaying button on both platforms.

Multiplatform application purpose was to gain the highest
rate of sharing code. In case of project application that rate is
60%. Microsoft declares that according to application
functionality, it is possible to gain more than 90% of sharing
code.

B. Application performance

e Database operations. In that situation significant time
divergence on Android is seen. Native solution worked
better with that test than cross-platform application. In case
of 10S, results are close to each other with very little
advantage of Xamarin app. Described discrepancy may be
caused by libraries because it is hard to judge what

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. §, NO. 3,2017

Duraten (3]

Duraton (1)

L]

¥

&

L3

E]

mechanism were used. Native application high performance
results from fact that system contains libraries collaborating
with SQLite what makes them well optimized. It is worth
mention that problem with testing in cross-platform
application occurred on Android devices having version 7.0
minimum. Since that version, library files have not being
added as default what means that multiplatform application
has not worked correctly. The solution for that case is target
change from API 25 version (Android 7.1) to API 23
(Android 6.1).

Database test - Android
D e aos I i et i

S S

Flgure 5. Database test - Android.

Database test - i0S
T s s I Crons-platorm wp

Frane §_ORCANT ot Ar_1ELARGF rosa b HEBECCO Proa S MANWID Prase s SOSCAREZ EeTry——

Figure 6. Database test - iOS.

e Data sorting. It is the most reliable test because there was

Dueaton {8}

&

not used any extensions. The only one used thing is basic
languages functionality like conditions, loops and arrays.
Time of data sorting is comparable in both platforms but the
variances are lower on i0S platform. Android times
differences (to native solution advantage) result from fact
that it is necessary to run additional virtual machine (except
JVM) for C# code.

Data sorting - Android
T histve sce B Costipatom aep

I
Figure 7. Data sorting - Android.

Curason (8)
- - - &

~

Durabon {3}
32 2 & & % =

125

Data sorting - 105
B s s N o pamorm a0

Pranm 5_410CASST Pad Ar_1ELAEGF Prone 8s_11EBECDO Pron B_HESWED

Figure 8. Data sorting - i0S.

Prore bs_EDSCAFR2 P M 2_EDECSET

File reading and cryptographic algorithms. It characterizes
variability of tests times on Android. It means that
dependently on tested device, multiplatform application
performs better or worse than native solution. It is seen that
native solution worked better on LG smartphones. Devices
manufacturers implement various solutions which main
purpose is to improve CPU speed what impacts on
performance and battery saving. In this case, it could blemish
test result. On i0S platform, native solutions definitely beat
cross-platform app. Differences can be caused by how
cryptographic functions were implemented.

File reading and cryptographic algorithms - Android
T Matew a0 B Crons pastam w50

||||.||||||II|| Ilil||||
SIS S S S

Figure 9. File reading and cryptographic algorithms - Android.

File reading and cryptographic algorithms - i0S
I e oy D oo patiem w0

1|,l.u|

Frone §_EHCALST Pat dis_1IEMERF #hone 81_1ERECCO Froe §_BEIWID e b1_BOSCAFEY Pag A 3_CIECIAT

Figure 10. File reading and cryptographic algorithms - i0S.

Applying effects to picture. In this case, differences are
significant. Multiplatform solution is definitely more
efficient that in native ones. It is caused by used libraries
which mechanisms are completely distinct. In Xamarin,
effects are used on containers displaying picture instead of
just on picture. Due to that, operations perform so fast.

126 DOBRZANSKI and ZABIEROWSKI: THE COMPARISON OF NATIVE APPS PERFORMANCE ON I0S (SWIFT) AND ANDROID ...

Applying effects to picture - Android Interface test - i0S
[e L T L Katve sop BN Crous g aop

Am| l[“ 555 I I i

Duraton (1)
¥ 8 B B

i

ff//f// fffgf =

o
Figure 11. Applying effects to picture - Android. reMiamCuST s mewioies s s
Figure 14. Interface test - iOS.

Applying effects to picture - 08
S e B st VI. SUMMARY

The project purpose was to compare performance between

% native applications and multiplatform one. Tests and their
A results do not clarify problem — if multiplatform application can

B be as efficient or better than native technologies. It is important
E . I that Xamarin.Forms allows to make application writing process
easier but it does not replace knowledge about native

“ technologies. Taking into consideration executed tests, it is seen
that Xamarin is not much slower. Moreover it is developing
dynamically. Xamarin.Forms is worth considering platform

i T T R T PRI D T e Pl while choosing appropriate technology for multiplatform

Figure 12. Applying effects to picture - iOS. application creating. However, all depends on functionality of
creating application.

2

o Interface test. It is the most important test — it determines
interface working, i.e. how application will be judged by

REFERENCES
[1] Roman Wantoch-Rekowski, ,,Android w praktyce. Projektowanie

potential user. There was used only interface elements, not aplikacji”, Wydawnictwo Naukowe PWN SA, 2014.
libraries. Results are definitely better on native solutions [2] Andrzej Stasiewicz, ,,Android Studio. Podstawy tworzenia aplikacji”,
where everything emerged the most optimized. Helion, 2015.

. . . [3] Carmen Delessio, Lauren Darcey, Shane Conder, ,,Android Application
Multiplatform application has to transform whole interface Development in 24 hours”, Pearson 2014.

for being compatible with native determinants. For that 4] Mattew Mathias, John Gallagher, , Swift Programming: The Big Nerd
reason, time of operation executing is longer. Worth Ranch Guide”, Pearson Education 2017.

mention also is fact, that interface is tested heaVily where [5] Charles Petzold, “Cross-platform C# programming for i0OS, Android and
. .. . Windows”, Microsoft Press, 2016.
the most of available applications execute less operations.

In that cases, differences should be imperceptible.

Dawid Dobrzanski was born in Dabrowa Gornicza,
Poland, in 1993. He lives in Pabianice. He received
the Master’s degree in information technology from
Lodz University of Technology (LUT), Poland
in 2017. He is focused on web technologies and he is
enthusiast of mobile technologies.

Interface test - Android
Y piste s N s s s

.|.||\.I. NI
f £ £ 7 f/ 4 f/

4 4 K 7

Wojciech Zabierowski (Assistant Professor at
Department of Microelectronic and Computer
Science Technical University of Lodz) was born in
Lodz, Poland, on April 9, 1975. He received the MSc
and PhD degrees from the Technical University of
Lodz in 1999 and 2008, respectively. He is an author
or co-author of more than 100 publications: journals
and most of them - papers in international conference
proceedings. He has been reviewer in dozens
international conferences. He supervised more than
200 Eng. and Msc theses. He is focused on internet technologies, MEMS
technologies and automatic generation of music. He is working in linguistic
analysis of musical structure.

Figure 13. Interface test - Android.

