Identyfikatory
Warianty tytułu
Prognozowanie czynników warunkujących minimalną temperaturę zapłonu pyłu węglowego w oparciu o analizę składników i regresję metodą wektorów nośnych
Języki publikacji
Abstrakty
To investigate the effect of different proximate index on minimum ignition temperature(MIT) of coal dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine (SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial to the assessment of the risk induced by coal dust explosion (CDE).
Badanie wpływu współczynnika odległości na minimalną temperaturę zapłonu pyłu węglowego przeprowadzono z wykorzystaniem 30 próbek węgli o różnych właściwościach. Przy użyciu dwu-palnikowego analizatora, określono podstawowe parametry analizowanych węgli: wilgotność, zawartośćpopiołów, zawartość substancji lotnych, poziom zawartości węgla C oraz minimalną temperaturę zapłonu. Wyniki obliczeń wykazują ścisłą korelację pomiędzy tymi wielkościami, analiza składu pozwoliła na wyodrębnienie podstawowych składników, określono także czynniki warunkujące wysokość minimalnej temperatury zapłonu dla poszczególnych rodzajów węgli. Do analizy danych eksperymentalnych wykorzystano model regresji metodą wektorów nośnych w celu obliczenia minimalnej temperatury zapłonu, a błąd jej oszacowania wynosi poniżej 10%. Metodę powyższą stosować można do prognozowania wysokości minimalnej temperatury zapłonu, co jest ważnym aspektem w ocenie ryzyka wybuchu pyłu węglowego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
335--350
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
- Liaoning Technical University, No. 47, Zhong Hua Road, China
autor
- Liaoning Technical University, No. 47, Zhong Hua Road, China
autor
- Liaoning Technical University, No. 47, Zhong Hua Road, China
Bibliografia
- [1] ASTM D7582-12, 2013. Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM International, West Conshohocken, Pa, USA.
- [2] ASTM D3173 / D3173M-17a, 2017. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, USA.
- [3] ASTM D3174-12, 2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International, West Conshohocken, PA, USA.
- [4] ASTM D3175-17, 2017. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, USA.
- [5] AQ 1045-2007. criterion of explosion identification of coal dust. China.
- [6] Addai E.K., Gabel D., Krause U., 2016. Models to estimate the minimum ignition temperature of dusts and hybrid mixtures. Journal of Hazardous Materials 304, 73-83.
- [7] Addai E.K., Gabel D., Krause U., 2016. Experimental investigation on the Minimum Ignition Temperature of Hybrid Mixtures of Dusts and Gases or Solvents. Journal of Hazardous Materials 301, 15, 314-326.
- [8] Abbasi T., Abbasi S.A., 2007. Dust explosions-cases, causes, consequences, and control. Journal of Hazardous Materiale 140, 1, 7-44.
- [9] Amyotte P.R., Soundararajan R., Pegg M.J., 2003. An investigation of iron sulphide dust minimum ignition temperature. Journal of Hazardous Materials 97, 1, 1-9.
- [10] Babrauskas V., 2003. Ignition Handbook, Fire Science Publishers, Washington.
- [11] Cashdollar K.L., 2000. Overview of dust explosibility characteristics. Journal of Loss Prevention in the Process Industries 13, 3, 183-199.
- [12] Deng J., Qu J., Wang Q.H., et al., 2014. Experimental study on minimum ignition temperature of bituminous coal dust cloud. Mining Safety & Environmental Protection 41, 6, 13-15.
- [13] Danzi E., Marmo L., Riccio D., 2015. Minimum Ignition Temperature of layer and cloud dust mixtures. Journal of Loss Prevention in the Process Industries 36, 7, 326-334.
- [14] Eckhoff R.K., 2003. Dust Explosions in the Process Industries, third ed. Gulf Professional Publishing, Amsterdam.
- [15] GB/T 16429-1996. Determination of minimum ignition temperature of dust clouds. China.
- [16] Li Q.Z., Zhai C., Wu H.J., et al., 2011. Investigation on coal dust explosion characteristics using 20L explosion sphere vessels. Journal of China Coal Society 36, 5, 119-124.
- [17] Li Yucheng, Liu Tianqi, 2015. Principal component analysis of impact of coal quality index on flame length in coal dust explosion. Journal of Safety Science and Technology 11, 3, 40-46.
- [18] Liu Lixia, Ma Junhai, 2008. Squared support vector machine for petroleum futures price prediction. Computer Engineering and Applications 44, 32, 230-231.
- [19] Mittal M., Guha B.K., 1997. Minimum ignition temperature of polyethylene dust: a theoretical mode. Fire and Materials, 169-177.
- [20] Nifuku M., Koyanaka S., Ohya H., et al., 2006. Ignitability characteristics of aluminium and magnesium dusts relating to the shredding processes of industrial wastes. M Amyotte P. Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, Vol. I. Halifax, NS, Canada: Dalhousie University 77-86.
- [21] Nifuku M., Koyanaka S., Ohya H., et al., 2007. Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes. Journal of Loss Prevention in the Process Industries 20, 6, 322-329.
- [22] Prabhakar D.R., Paul R.A., Michael J.P., 1998. Effect of Inerts on Layer Ignition Temperatures of Coal Dust. Combustion and Flame 114, 1-2, 41-53.
- [23] TRaoré M., Dufaud O., Perrin L., et al., 2009. Dust explosions: How should the influence of humidity be taken into account. Process Safety and Environmental Protection 87, 1, 14-20.
- [24] Wu D.J., Frederik N., Filip V., et al., 2016. Experimental study on the minimum ignition temperature of coal dust cloud in oxy-fuel combustion atmospheres. Journal of Hazardous Materials 307, 15, 274-280.
- [25] Wu D.J., Frederik N., Filip V., et al., 2014. Experimental analysis of minimum ignition temperature of coal dust layers in oxy-fuel combustion atmospheres. Procedia Engineering 84, 6, 330-339.
- [26] Wang X.C., Shi F., Yu L., et al., 2013. 43 cases analysis of MATLAB neural network. Beijing, Beihang University press, 102-104.
- [27] Wang X.F., 2016. Research of nonlinear forecast on minimum ignition energy and minimum ignition temperature of Mg-Al alloy dust. Taiyuan: North University Of China, 1-3.
- [28] Zheng Y.P., Feng C.C., Jing G.X., et al., 2009. A statistical analysis of coal mine accidents caused by coal dust explosions in China. Journal of Loss Prevention in the Process Industries 22, 4, 528-532.
- [29] Zhang Q.L., Chen Q.S., Hu W., et al., 2014. SVM optimal prediction model of backfill drill-hole life. Journal of Central South University (Science and Technology) 45, 2, 536-541.
- [30] Zhang D.K., Wall T.F., 1993. An analysis of the ignition of coal dust clouds. Combustion & Flame 4, 4, 475-480.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb955c47-f7d7-40f7-ae34-75685827eeac