PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Range-Kernel orthogonality and elementary operators on certain Banach spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characterization of the points in Cp:1≤p<∞(H) , the Von Neuman-Schatten p-classes, that are orthogonal to the range of elementary operators has been done for certain kinds of elementary operators. In this paper, we shall study this problem of characterization on an abstract reflexive, smooth and strictly convex Banach space for arbitrary operator. As an application, we consider other kinds of elementary operators defined on the spaces Cp:1≤p<∞(H), and finally, we give a counterexample to Mecheri’s result given in this context.
Wydawca
Rocznik
Strony
272--279
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Mathematics, King Khalid University, Abha, Saudi Arabia
  • Department of Mathematics, University of Mascara, Mascara, Algeria
  • Department of Mathematics, University of Bisha, Bisha, Saudi Arabia
  • Department of Mathematics, King Khalid University, Abha, Saudi Arabia
Bibliografia
  • [1] R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287 (1990), 719–726.
  • [2] A. Bachir and A. Segres, Generalized Fuglede-Putnam’s theorem and orthogonality, AJMAA 1 (2004), 1–5.
  • [3] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292.
  • [4] R. Harte, Skew exactness and range-kernel orthogonality, Filomat 19 (2005), 19–33.
  • [5] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 136–140.
  • [6] M. Amouch, A note on the range of generalized derivation, Extracta Math. 23 (2008), no. 3, 235–242.
  • [7] M. Amouch, Range, kernel orthogonality and operator equations, Extracta Math. 21 (2008), no. 2, 149–157.
  • [8] B. P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, Linear Algebra Appl. 383 (2004), 93–106.
  • [9] B. P. Duggal, Range-kernel orthogonality of the elementary operator (…), Linear Algebra Appl. A 337 (2001), 79–86.
  • [10] B. Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979.
  • [11] J. R. Holub, On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201 (1973), 157–163.
  • [12] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, New York, 1993.
  • [13] B. P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogonality of derivations, Int. J. Math. Math. Sci. 27 (2001), 573–582.
  • [14] S. Mecheri, Gâteaux derivative and orthogonality in Cp-classes, J. Inequal. Pure Appl. 7 (2006), no. 2, 77.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb92b09e-c300-4df1-ab28-253bdd948697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.