PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties and Backward Trajectory Statistics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A cluster analysis is applied to the Aerosol Robotic Network (AERONET) data obtained at Belsk, Poland, as well as three nearby Central European stations (Leipzig, Minsk and Moldova) for estimation of atmospheric aerosol types. Absorption Ångstrom exponent (AAE), aerosol optical thickness (AOT) and extinction Ångstrom exponent (EAE) parameters are used. Clustering in both 2D (AOT, EAE) and 3D (AOT, EAE, AAE) is investigated. A method of air mass backward trajectory analysis is then proposed, with the receptor site at Belsk, to determine possible source regions for each cluster. Four dominant aerosol source regions are identified. The biomass burning aerosol source is localized in the vicinity of Belarusian-Ukrainian border. Slovakia and northern Hungary are found to be the source of urban/industrial pollutants. Western Poland and eastern Germany are the main sources of polluted continental aerosols. The most differentiated source region of Scandinavia, Baltic Sea and Northern Atlantic, associated with lowest values of AOT, corresponds to clean continental and possibly maritime type aerosols.
Czasopismo
Rocznik
Strony
2650--2676
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Balis, D.S., V. Amiridis, C. Zerefos, E. Gerasopoulos, M. Andreae,P. Zanis, A. Kazantzidis, S. Kazadzis, and A. Papayannis (2003), Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode, Atmos Environ. 37, 32, 4529- 4538, DOI: 10.1016/S1352-2310(03)00581-8.
  • Barnaba, F., and G.P. Gobbi (2004), Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001, Atmos. Chem. Phys. 4, 9/10, 2367-2391, DOI: 10.5194/acp-4-2367-2004.
  • Barnaba, F., F. Angelini, G. Curci, and G.P. Gobbi (2011), An important fingerprint of wildfires on the European aerosol load, Atmos. Chem. Phys. 11, 20, 10487-10501, DOI: 10.5194/acp-11-10487-2011.
  • Bergstrom, R.W., P.B. Russell, and P. Hignett (2002), Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci. 59, 3, 567-577, DOI: 10.1175/1520-0469(2002)059 2.0.CO;2.
  • Berry, M.V., and I.C. Percival (1986), Optics of fractal clusters such as smoke, J. Modern Optics 33, 5, 577-591, DOI: 10.1080/713821987.
  • Boselli, A., R. Caggiano, C. Cornacchia, F. Madonna, L. Mona, M. Macchiato, G. Pappalardo, and S. Trippetta (2012), Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site, Atmos. Res. 104, 98-110, DOI: 10.1016/j.atmosres.2011.08.002.
  • Burton, S.P., R.A. Ferrare, C.A. Hostetler, J.W. Hair, R.R. Rogers, M.D. Obland, C.F. Butler, A.L. Cook, D.B. Harper, and K.D. Froyd (2012), Aerosol classification using airborne High Spectral Resolution Lidar measurementsmethodology and examples, Atmos. Meas. Tech. 5, 1, 73-98, DOI: 10.5194/ amt-5-73-2012.
  • Cattrall, C., J. Reagan, K. Thome, and O. Dubovik (2005), Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations, J. Geophys. Res. 110, D10, DOI: 10.1029/2004JD005124.
  • Chin, M., P. Ginoux, S. Kinne, O. Torres, B.N. Holben, B.N. Duncan, RV. Martin, J.A. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci. 59, 3, 461-483, DOI: 10.1175/1520-0469(2002)0592.0.CO;2.
  • Costabile, F., F. Barnaba, F. Angelini, and G.P. Gobbi (2013), Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption, Atmos. Chem. Phys. 13, 5, 2455-2470, DOI: 10.5194/acp-13-2455-2013.
  • Dubovik, O., A. Smirnov, B.N. Holben, M.D. King, Y.J. Kaufman, T.F. Eck, and I. Slutsker (2000), Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res. 105, D8, 9791-9806, DOI: 10.1029/2000 JD900040.
  • Dubovik, O., B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Idier, T. Anre, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 3, 590-608, DOI: 10.1175/1520-0469(2002)059 2.0.CO;2.
  • Dvorská, A., G. Lammel, and I. Holoubek (2009), Recent trends of persistent organic pollutants in air in central Europe-Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy. Atmos. Environ. 43, 6, 1280-1287, DOI: 10.1029/ 2000JD900040.
  • Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T., O’Neill, I. Slutske and S. Kinne (1999), Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res. 104, D24, 31333-31349, DOI: 10.1029/1999JD900923.
  • Eck, T.F.,B.N. Holben, J.S. Reid, N.T. O’Neill, J.S. Schafer, O. Dubovik, A. Smirnov, M.A. Yamasoe, and P. Artaxo (2003), High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions, Geophys. Res. Lett. 30, 20, DOI: 10.1029/2003GL01786.
  • EEA (2015), Air quality in Europe — 2015 report, European Environment Agency, DOI: 10.2800/62459.
  • Fuller, K.A., W.C. Malm, and S.M. Kreidenweis (1999), Effects of mixing on extinction by carbonaceous particles, J. Geophys. Res. 104, D13, 15941- 15954, DOI: 10.1029/1998JD100069.
  • Giles, D.M., B.N. Holben, T.F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R.R. Dickerson, A.M. Thompson, and J.S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, J. Geophys. Res. 117, D17, DOI: 10.1029/2012 JD018127.
  • Ginoux, P., M. Chin, I. Tegen, J.M. Prospero, B. Holben, O. Dubovik, and S.J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, D17, 20255-20273, DOI: 10.1029/ 2000JD000053.
  • Gobbi, G.P., Y.J. Kaufman, I. Koren, and T.F. Eck (2007), Classification of aerosol properties derived from AERONET direct sun data, Atmos. Chem. Phys. 7, 2, 453-458, DOI: 10.5194/acp-7-453-2007.
  • Groß, S., M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold (2013), Aerosol classification by airborne high spectral resolution lidar observations, Atmos. Chem. Phys. 13, 5, 2487-2505, DOI: 10.5194/acp-13-2487- 2013.
  • Groß, S., V. Freudenthaler, M. Wirth, and B. Weinzierl (2015), Towards an aerosol classification scheme for future EarthCARE lidar observations and implications for research needs, Atmos. Sci. Lett. 16, 1, 77-82, DOI: 10.1002/asl2. 524.
  • Holben, B.N., D. Tanré, A. Smirnov, T.F. Eck, I. Slutsker, O. Dubovik, F. Lavenu, N. Abuhassen, and B. Chatenet (1999), Optical properties of aerosols from long term ground-based aeronet measurements. In: Proc. ALPS99, 17-23 January 1999, Meribel, France, WK1-O-19.
  • Holben, B.N., D. Tanre, A. Smirnov, T.F. Eck, I. Slutsker, N. Abuhassan, and G. Zibordi (2001), An emerging ground‐based aerosol climatology: Aerosol optical depth from AERONET, J. Geophys. Res. 106, D11, 12067-12097, DOI: 10.1029/2001JD900014.
  • Holben, B.N., T.F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik (2006), AERONET’s version 2.0 quality assurance criteria. In: Asia-Pacific Remote Sensing Symp., International Society for Optics and Photonics, 64080Q-64080Q, DOI: 10.1117/12.706524.
  • Hsu, N.C., J.R. Herman, O. Torres, B.N. Holben, D. Tanre, T.F. Eck, A. Smirnov, B. Chatenet, and F. Lavenu (1999), Comparisons of the TOMS aerosol index with Sun‐photometer aerosol optical thickness: Results and applications, J. Geophys. Res. 104, D6, 6269-6279, DOI:10.1029/1998JD200086.
  • Jaeglé, L., P.K. Quinn, T.S. Bates, B. Alexander, and J.T. Lin (2011), Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys. 11, 7, 3137-3157, DOI: 10.5194/acp-11- 3137-2011.
  • Jarosławski, J., and A. Pietruczuk (2010), On the origin of seasonal variation of aerosol optical thickness in UV range over Belsk, Poland, Acta Geophys. 58, 6, 1134-1146, DOI: 10.2478/s11600-010-0019-4.
  • Junge, C.E., and P.E. Gustafson (1957), On the distribution of sea salt over the United States and its removal by precipitation, Tellus 9, 2, 164-173, DOI: 10.1111/j.2153-3490.1957.tb01869.x.
  • Kabashnikov, V., G. Milinevsky, A. Chaikovsky, N. Miatselskaya, V. Danylevsky, A. Aculinin, D. Kalinskaya, E. Korchemkina, A. Bovchaliuk, A. Pietruczuk, P. Sobolewsky, and V. Bovchaliuk (2014), Localization of aerosol sources in East-European region by back-trajectory statistics, Int. J. Remote Sens. 35, 19, 6993-7006, DOI: 10.1080/01431161.2014.960621.
  • Kalapureddy, M.C.R., D.G. Kaskaoutis, P. Ernest Raj, P.C.S. Devara, H.D. Kambezidis, P.G. Kosmopoulos, and P.T. Nastos (2009), Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), J. Geophys. Res. 114, D17, DOI: 10.1029/2009JD011826.
  • Kaskaoutis, D.G., P. Kosmopoulos, H.D. Kambezidis, and P.T. Nastos (2007a), Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data, Atmos. Environ. 41, 34, 7315-7329, DOI: 10.1016/j.atmosenv.2007.05.017.
  • Kaskaoutis, D.G., H.D. Kambezidis, N. Hatzianastassiou, P.G. Kosmopoulos, and K.V.S. Badarinath (2007b), Aerosol climatology: on the discrimination of aerosol types over four AERONET sites, Atmos. Chem. Phys. 7, 3, 6357- 6411, DOI: 10.5194/acpd-7-6357-2007.
  • Kaskaoutis, D.G., K.V.S. Badarinath, S. Kumar Kharol, A. Rani Sharma, and H.D. Kambezidis (2009), Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India, J. Geophys. Res. 114, D22, DOI: 10.1029/2009JD012423.
  • Kaufman, L., and P.J. Rousseeuw (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley and Sons Inc., Hoboken, DOI: 10.1002/ 9780470316801.
  • Kaufman, Y.J., D. Tanré, and O. Boucher (2002), A satellite view of aerosols in the climate system, Nature 419, 6903, 215-223, DOI: 10.1038/nature01091.
  • Kikas, U., A. Reinart, A. Pugatshova, E. Tamm, and V. Ulevicius (2008), Microphysical, chemical and optical aerosol properties in the Baltic Sea region, Atmos. Res. 90, 2, 211-222, DOI: 10.1016/j.atmosres.2008.02.009.
  • King, M.D., Y.J. Kaufman, D. Tanré, and T. Nakajima (1999), Remote sensing of tropospheric aerosols from space: Past, present, and future, Bull. Am. Meteorol. Soc. 80, 11, 2229-2259, DOI: 10.1175/1520-0477(1999)0802.0.CO;2.
  • Koch, D., G.A. Schmidt, and C.V. Field (2006), Sulfur, sea salt, and radionuclide aerosols in GISS ModelE, J. Geophys. Res. 111, D6, DOI: 10.1029/2004JD 005550.
  • Kosmopoulos, P.G., D.G. Kaskaoutis, P.T. Nastos, and H.D. Kambezidis (2008), Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data, Remote Sens. Environ. 112, 5, 2354-2366, DOI: 10.1007/s11270-013-1605-2.
  • Lack, D.A., and C.D. Cappa (2010), Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem. Phys. 10, 9, 4207-4220, DOI: 10.5194/acp-10-4207-2010.
  • Levy, R.C., L.A. Remer, and O. Dubovik (2007), Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res. 112, D13, DOI: 10.1029/2006JD 007815.
  • Lloyd, S. (1982), Least squares quantization in PCM, IEEE Trans Inform. Theor. 28, 2, 129-137, DOI: 10.1029/2006JD0078.
  • Mishchenko, M.I., I.V. Geogdzhayev, B. Cairns, B.E. Carlson, J. Chowdhary, A.A. Lacis, and L.D. Travis(2007), Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective, J. Quant. Spectrosc. Rad. Trans. 106, 1, 325-347, DOI: 10.1016/j.jqsrt. 2007.01.007.
  • Moosmüller, H., R.K. Chakrabarty, and W.P. Arnott (2009), Aerosol light absorption and its measurement: A review, J. Quant. Spectrosc. Rad. Trans. 110, 11, 844-878, DOI: 10.1016/j.jqsrt.2009.02.035.
  • Omar, A.H., D.M. Winker, M.A. Vaughan, Y. Hu, C.R. Trepte, R.A. Ferrare, K.-P. Lee, C.A. Hostetler, Ch. Kittaka, R.R. Rogers, R.E. Kuehn, and Z. Liu (2009), The CALIPSO automated aerosol classification and lidar ratio selection algorithm, J. Atmos. Ocean Technol. 26, 10, 1994-2014, DOI: 10.1175/2009JTECHA1231.1.
  • Pace, G., A.D. Sarra, D. Meloni, S. Piacentino, and P. Chamard (2006), Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types, Atmos. Chem. Phys. 6, 3, 697-713, DOI: 10.5194/acp-6-697-2006.
  • Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo, and A. Boselli (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. 13, 8, 4429-4450, DOI: 10.5194/acp-13-4429-2013.
  • Pawar, G.V., P.C.S. Devara, and G.R. Aher (2015), Identification of aerosol types over an urban site based on air-mass trajectory classification, Atmos. Res. 164, 142-155, DOI: 10.1016/j.atmosres.2015.04.022.
  • Perrone, M.R., F. De Tomasi, and G.P. Gobbi (2014), Vertically resolved aerosol properties by multi-wavelength lidar measurements, Atmos. Chem. Phys. 14, 3, 1185-1204, DOI: 10.5194/acp-14-1185-2014.
  • Pietruczuk, A. (2013), Short term variability of aerosol optical thickness at Belsk for the period 2002-2010, Atmos. Environ. 79, 744-750, DOI: 10.1016/ j.atmosenv.2013.07.054.
  • Pietruczuk, A., and A. Chaikovsky (2012), Variability of aerosol properties during the 2007-2010 spring seasons over central Europe, Acta Geophys. 60, 5, 1338-1358, DOI: 10.2478/s11600-012-0017-9.
  • Pietruczuk, A., and J. Jarosławski (2013), Analysis of particulate matter concentrations in Mazovia region, central Poland, based on 2007-2010 data, Acta Geophys. 61, 2, 445-462, DOI: 10.2478/s11600-012-0069-x.
  • Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, and B.N. Holben (2005), The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci. 62, 4, 947-973, DOI: 10.1175/JAS3385.1.
  • Robinson, N.H., H.M. Newton, J.D. Allan, M. Irwin, J.F. Hamilton, M. Flynn, and H. Coe (2011), Source attribution of Bornean air masses by back trajectory analysis during the OP3 project, Atmos. Chem. Phys. 11, 18, 9605-9630, DOI: 10.5194/acp-11-9605-2011.
  • Rogula-Kozłowska, W., K. Klejnowski, P. Rogula-Kopiec, B. Mathews, and S. Szopa (2012), A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland, Bull. Environ. Contam. Toxic. 88, 5, 722- 729, DOI: 10.1007/s00128-012-0533-y.
  • Rousseeuw, P.J. (1987), Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Comput. Appl. Math. 20, 53-65, DOI: 10.1016/ 0377-0427(87)90125-7.
  • Russell, P.B., R.W. Bergstrom, Y. Shinozuka, A.D. Clarke, P.F. De Carlo, J.L. Jimenez, J.M. Livingston, J. Redemann, O. Dubovik, and A. Strawa (2010), Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys. 10, 3, 1155-1169, DOI: 10.5194/acp-10-1155-2010.
  • Russell, P.B., M. Kacenelenbogen, J.M. Livingston, O.P. Hasekamp, S.P. Burton, G.L. Schuster, M.S. Johnson, K.D. Knobelspiesse, J. Redemann, S. Ramachandran, and B. Holben (2014), A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry, J. Geophys. Res. 119, 16, 9838-9863, DOI: 10.1002/2013JD021411.
  • Seibert, P., H. Kromp-Kolb, U. Baltensperger, D.T. Jost, M. Schwikowski, A. Kasper, and H. Puxbaum (1994), Trajectory analysis of aerosol measurements at high alpine sites. In: Proc. 4th EUROTRAC Symp. “Transport and Transformation of Pollutants in the Troposphere”, 25-29 March 1996, Garmisch-Partenkirchen, Germany, 689-693.
  • Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloudscreening and quality control algorithms for the AERONET database, Remote Sens. Environ. 73, 3, 337-349, DOI: 10.1016/S0034-4257(00)00109-7.
  • Stein, A.F., R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan (2015), NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc. 96, 12, 2059-2077, DOI: 10.1175/BAMSD-14-00110.1.
  • Stohl, A., G. Wotawa, P. Seibert, and H. Kromp-Kolb (1995), Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories, J. Appl. Meteorol. 34, 10, 2149- 2165, DOI: 10.1175/1520-0450(1995)0342.0.CO;2.
  • Toledano, C., V.E. Cachorro, A.M. De Frutos, M. Sorribas, N. Prats, and B.A. De la Morena (2007), Inventory of African desert dust events over the southwestern Iberian Peninsula in 2000-2005 with an AERONET Cimel Sun photometer, J. Geophys. Res. 112, D21, DOI: 10.1029/2006JD008307.
  • Torres, O., P.K. Bhartia, J.R. Herman, A. Sinyuk, P. Ginoux, and B. Holben (2002), A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci. 59, 3, 398-413, DOI: 10.1175/1520-0469(2002)0592.0.CO;2.
  • Wright, R., L.P. Flynn, H. Garbeil, A.J.L. Harris, and E. Pilger (2004), MODVOLC: near-real-time thermal monitoring of global volcanism, J. Volcanol. Geothermal Res. 135, 29-49, DOI: 10.1016/j.jvolgeores.2003.12.008.
  • Valenzuela, A., F.J. Olmo, H. Lyamani, M. Antón, G. Titos, A. Cazorla, and L. Alados-Arboledas (2015), Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain), Atmos. Res. 154, 1-13, DOI: 10.1016/j.atmosres.2014.10.015.
  • Zawadzka, O., K.M. Markowicz, A. Pietruczuk, T. Zielinski, and J Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos. Environ. 69, 15-28, DOI: 10.1016/j.atmosenv.2012.11.065.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb91c767-073a-402c-bb1c-84d850c4d611
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.