PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation and physicochemical properties of residual carbon in gasification slag

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gasification slag is the solid waste produced in the coal gasification process, and its treatment and disposal problems are becoming more and more serious. In this study, the gasification slag produced in a chemical base in northern China and its residual carbon obtained by gravity separation of water medium were taken as the research objects, and their physicochemical properties were analyzed comprehensively. The residual carbon products, ash-rich products and high-ash products were obtained from the gasification slag after gravity separation. Under the optimal structure, the ignition loss of residual carbon products was reduced from 79.80% to 16.84%, and the yield was 11.64%. The high content of amorphous carbon and developed pores in the residual carbon provide the possibility of manufacturing high value-added materials. Raman spectrum showed that the residual carbon had lower aromaticity, higher content of small and medium aromatic ring structures, lower structural stability and easier combustion. Thermogravimetric combustion kinetics showed that the average combustion rate of residual carbon was 0.325(dm/dt)mean/%•min−1, the comprehensive combustion characteristic index was 1.41•10−9%2•min−2•°C−3. It has excellent performance and can be used as a raw material for mixed combustion in a circulating fluidized bed. The analysis of physical and chemical properties of residual carbon is of great significance for follow-up exploration of the resource utilization and high-value utilization of the residual carbon.
Rocznik
Strony
art. no. 154928
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
autor
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
autor
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
autor
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
autor
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
  • State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
  • Key Laboratory of Coal Science and Technology(Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China)
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China)
Bibliografia
  • AYENI, J. O.; MA, S. H.; WANG, X. H.; HOU, X. 2022, A Facile Synthesis Process and Electromagnetic Absorption Performance of High Alumina Fly Ash and Gasification Slag- Based Ceramic Composites. J. Available at SSRN 4102978.
  • BLISSETT, R.S.; ROWSON, N.A. 2012, A review of the multi-component utilisation of coal fly ash. J. Fuel. 9, 1–23.
  • BASTRZYK, A., POLOWCZYK, I., SADOWSKI, Z., SIKORA, A., 2011. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Sep. Purif. Technol. 77, 325-330.
  • CHAO, Y. J.; WANG, H. J. 2015, Feasibility Study of Circulating Fluidized Bed Boiler Blending Burning Gasification Slag and Coal Slime. J. Chemical Fertilizer Industry. 48-50.
  • DONG, L. P.; A method for efficiently classifying coal gasification waste residue to prepare high-purity ash and high-purity carbon:CN201810013201.3. P. 2018-06-15.
  • DONG, L. P.; FAN, P. P.; FAN, M. Q. A kind of gasification slag hydrocyclone gravity separation carbon ash separation device and method:CN111659527A. P.2020-09-15.
  • DRZYMALA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wroclaw, Poland.
  • EMRE ALTUN, N.; XIAO C.F.; HWANG, J.Y. 2009, Separation of unburned carbon from fly ash using a concurrent flotation column. J. Fuel Processing Technology. 90, 1464-1470.
  • FLORENCE, T.; ANDREI, VEKSHA.; VICTOR W.K.; C.; W.D. CHANAKA, U.; DARA, K.; BINTE, M.; APOSTOLOS, G.; TEIK-THYE, L.; GRZEGORZ, L. 2019, Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support. J. Fuel. 254, 115561.
  • GUO, F. H.; ZHAO, X.; GUO, Y.; ZHANG, Y. X.; WU, J. J. 2020, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects. J. 585, 124148.
  • HAN, Y. N.; LIAO, J. J.; BAI, Z. Q.; BAI, J.; LI, X.; LI, W. 2016, Correlation between the Combustion Behavior of Brown Coal Char and its Aromaticity and Pore Structure. Energy & Fuels, 30, 3419-3427.
  • HE, X. W.; CUI, W.; WANG, C. R.; SHI, Y. T.; ZHANG, J. 2014, Leaching characteristics and chemical speciation analysis of heavy metals in gasification furnace slag. J. Chemical environmental protection. 34, 499-502.
  • HU, Z. W.; LIU, T.; MAN, J.; LV, Q. L. 2016, Sources of main environmental pollutants in coal chemical industry and pollution control countermeasures. J. Shandong chemical industry. 45, 155-156,158.
  • HU, J. Y.; HUANG, Y.; WANG, W. Q.; FENG, Q. M.; XU, Z. H. 2018, Application of coal gasification slag flotation fine carbon in dyeing wastewater. J. Environmental engineering. 36 (3): 59-63
  • JIANG, J, Y.; YANG, W, H.; CHENG, Y, P.; LIU, Z, D.; ZHANG, Q.; ZHAO, K. 2019, Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification. J. Fuel. 239: 559-572.
  • LIU, D. X.; HU, J. Y.; FENG, Q. M.; HUANG, Y.; XU, Z. H.; 2018, Study on Flotation of Coal Gasification Slag and Preparation of Activated Carbon from Carbon Concentrate. J. Coal Conversion. 41, 73-80.
  • LIU, X. D.; JIN, Z. W.; JING, Y. H.; FAN, P. P.; QI, Z. L.; BAO, W. R.; WANG, J. C.; YAN, X. H.; LV, P.; DONG, L. P. 2021, Review of the characteristics and graded utilisation of coal gasification slag. J. chinese journal of chemical engineering. 35, 92-106.
  • LI, H. Z.; DONG, L. P.; BAO, W. R.; WANG, J. C.; FAN, P. P.; FAN, M. Q. 2021, Cyclone carbon ash separation of coal gasification slag water medium based on apparent density. J. Progress in chemical industry. 1344-1353.
  • LI, H. T.; CAO, D. Y.; ZHANG, W. G.; WANG, L. 2021, XRD and Raman spectroscopic characterization of graphitization trajectory of high coal grade coal. J. Spectroscopy and spectral analysis, 41 (8): 2491-2498.
  • LV, D. P.; BAI, Y. H.; WANG, J. F.; SONG, X. D.; SU, Z. G.; YU, G. S.; ZHU, H.; TANG, G. J. 2021, Study on structural characteristics and combustion characteristics of residual carbon in entrained flow gasification fine slag. J. Journal of Fuel Chemistry and Technology, 49, 129-136.
  • MIURA, K.; MAE, K.; LI, W.; KUSAKAWA, T.; MOROZUMI, F. 2001, A Kumano Estimation of hydrogen Bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in- situ technique. J. Energy & Fuels. 15(3): 599-610.
  • POMYKALA, R. 2014, The Mechanical properties of coal gasification slag as a component of concrete and binding mixtures. J. Polish Journal of environmental studies. 23, 1403-1406.
  • REN, Z. Y.; JING, Y. H.; FAN, P. P.; GAO, Y. C.; WANG, J. C.; DONG, L. P.; BAO, W. R.; FAN, M. Q.; CHANG, L. P. 2021, Experimental study on the water medium gravity separation of gasification slag and the preparation of desulfurization and denitrification activated coke using separated carbon. J. Journal of China Coal Society, 46, 1164-1172.
  • SHI, Z. C.; DAI, G. F,; WANG, X. B.; DONG, Y. S.; LI, P.; YU, W.; TAN, H. Z. 2020, Review on the comprehensive resources utilization technology of coal gasification fine slag. J. Huadian Technology. 42, 63-73.
  • SHUAI, H.; YIN, H. F.; YUAN, H. D.; CHEN, J. X.; 2015, High temperature phase composition evolution and viscosity temperature characteristics of coal gasification slag. J. Coal conversion, 38, 44-48.
  • WANG, F. C. 2021.Coal gasification technology in China: review and prospect. J. Clean coal technology.27, 1-33
  • WANG, X. B.; FU, J. G.; ZHAO, D.; HUANG, Y. T. 2021, Study on flotation quality improvement of fine slag carrier. Coal engineering. J. 53, 155-159.
  • WANG, J. KONG, L. X.; BAI, J.; LI, H. Z.; GUO, Z. X.; BAI, Z. Q.; Li W. 2021, Research Progress on the influence of residual carbon in coal gasification ash on ash fluidity. J. Clean coal technology, 27, 181-192.
  • WU, S. P.; ZHAO, K.; DONG, Y. S.; WANG, X. B.; BAI, Y. H.; LIU, L. J.; YU, W. 2020, Research progress on flotation decarburization of gasification fine slag. J. Huadian Technology. 42, 81-86.
  • VASSILEV, S.V.; MENENDEZ, R.; BORREGO, A.G. 2004, Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates. J. Fuel and Energy Abstracts.83, 1563-1583.
  • XIANG, J. H.; ZENG, F. G.; LIANG, H. Z.; LI, M. F.; SONG, X. X.; ZHAO, Y. Y. 2016, Carbon structure characteristics and evolution mechanism of coals with different metamorphic degrees. J. Journal of China Coal Society, 41, 1498-1506.
  • XU, S.; ZHOU, Z.; GAO, X.; YU, G. S.; GONG, X. 2009, The gasification reactivity of unburned carbon present In gasification slag from entrained-flow gasifier. J. Fuel Processing Technology. 90, 1062-1070.
  • XUE, Z. H.; DONG, L. P.; LIU, A.; FAN, M. Q.; YANG, C. Y.; WANG, J. C.; BAO, W. R.; FAN, P. P. 2022, Feasibility and mechanism analysis of hydrophobic hydrophilic two-liquid separation of gasification fine slag. J. Journal of China Coal Society, 1-12.
  • XUE, Z. H.; DONG, L. P.; FAN, M. Q.; YANG, H. L.; LIU, A.; LI, Z. H.; BAO, W. R.; WANG, J. C.; FAN, P. P. 2021. Enhanced flotation mechanism of coal gasification fine slag with composite collectors, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022.128593
  • YANG, S.; SHI, L. J.; 2013, Component analysis and comprehensive utilization of coal gasification fine slag. J.Coal chemical industry. 4, 34-36,43
  • YU, W.; WANG, X. B.; BAI, Y. H.; LIU, L. J.; SHI, Z. C.; ZHAO, Y. X.; TAN, H. Z. 2021, Experimental study on flotation decarbonization of coal gasification fine slag. J. Clean coal technology. 27, 81-87
  • ZHAO, X. L.; ZENG, C.; MAO, Y. Y.; LI, W. H.; PENG, Y.; WANG, T.; EITENEER, B. 2010, The Surface Characteristics and Reactivity of Residual Carbon in Coal Gasification Slag. J. Energy & Fuels, 24, 91-94.
  • ZHU, D. D.; MIAO, S. D.; XUE, B.; JIANG, Y. S.; WEI, C. D. 2019, Effect of Coal Gasification Fine Slag on the Physicochemical Properties of Soil. J. Water, Air, & Soil Pollution. 230
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb912b02-8733-49b4-b5cc-f5d6bae6097e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.