PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metalforming methods dedicated for aerospace industry

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metody formowania elementów dedykowanych dla przemysłu lotniczego
Języki publikacji
EN
Abstrakty
EN
Detailed analysis of different metalforming methods of light and durable integral elements dedicated for the aerospace industry is the main aim of the work. Description of an integral part concept as well as basis of conventional processes used for their manufacturing are presented within the paper. Then incremental forming processes with a division into sheet and bulk metal forming methods are precisely described. State of the art in both experimental and numerical research on these processes is discussed within the paper. Finally, recent concept of an alternative incremental forming process dedicated for obtaining integral elements from lightweight alloys is presented. Particular attention is put on computer aided support of development of the innovative forming technology.
PL
Celem pracy jest szczegółowa analiza różnych metod prze-znaczonych do formowania lekkich i wytrzymałych elementów integralnych, dedykowanych dla przemysłu lotniczego. Zaprezentowano koncepcję elementów integralnych oraz podstawy konwencjonalnych procesów technologicznych stosowanych do ich kształtowania. Następnie opisano procesy kształtowania przyrostowego z podziałem na kształtowanie blach oraz elementów objętościowych. W pracy przedyskutowano również obecny stan wiedzy w tym zakresie zarówno od strony badań laboratoryjnych jak i analizy numerycznej. Ostatecznie, przedstawiono nową koncepcję alternatywnego procesu kształtowania przyrostowego dedykowanego dla uzyskiwania elementów integralnych stopów metali lekkich. Szczególną uwagę poświęcono wsparciu opracowywanej innowacyjnej technologii formowania od strony wielkoskalowych symulacji numerycznych.
Wydawca
Rocznik
Strony
294--310
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
Bibliografia
  • Alharthi, N., Bingol, S., Ventura, A., Misiolek, W., 2014, Analysis of extrusion welding in magnesium alloys - numerical predictions and metallurgical verification, Procedia Engineering, 81, 658-663.
  • Bidhar, S., Kuwazuru, O., Shiihara, Y., Utsunomiya, T., Hangai, Y., Nomura, M., Watanabe, I., Yoshikawa, N., 2015, Empirical formulation of stress concentration factor around an arbitrary-sized spherical dual-cavity system and its application to aluminum die castings, Applied Mathematical Modelling, in press, online available 13.03.2015, http://dx.doi.Org/10.1016/j.apm.2015.01.032
  • Bouzakis, K.D., Maliaris, G., Tsouknidas, A., 2012, FEM supported semi-solid high pressure die casting process optimization based on rheological properties by isothermal compression tests at thixo temperatures extracted, Computational Materials Science, 59, 133-139.
  • Cawthorn, Cristopher J., Loukaides, Evripides G, Allwood, Julian M., 2014, Comparison of analitycal models for sheet rolling, Procedia Engineering, 81, 2451-2456.
  • Chval, Z., Cechura, M., 2015, Monitoring extremely stressed points of stands of forging presses, Procedia Engineering, 100, 841-846.
  • Ding, S., Meehan, P.A., Daniel, W.J.T., 2011, A novel sheet metal forming method - millipede forming, Journal of Materials Processing Technology, 211, 376-381.
  • Feng, W., Yao, W., Jiang, P., 2014, Influence of eccentric on movements of orbital head with double eccentric structure in orbital forging, Procedia Engineering, 81, 2348-2354.
  • Filicel, L., Fratin L., Micari F., 2002, Analysis.of material formability in incremental forming, CIRP Annals - Manufacturing Technology, 51/1, 199-202.
  • Groche, P., Fritsche, D., Tekkaya E.A., Allwood, J.M., Hirt G, Neugebauer, R., 2007, Incremental bulk metal forming, CIRP Annals - Manufacturing Technology, 56, 635-656.
  • Grosman, F., Madej, L., Ziolkiewicz, S., Nowak, J., 2012a, Experimental and numerical investigation on develop¬ment of new incremental forming process, Journal of Materials Processing Technology, 212, 2200-2209.
  • Grosman, F., Tkocz, M., Pawlicki, J., Lipska, B., 2012b, Incremental forming of intergral parts, Hutnik - Wiadomości Hutnicze, 79, 8, 583-586.
  • Guo, C, Ge, W., Lin, F., 2015, Effects of scanning parameters on material deposition during electron beam selective melting of Ti-6A1-4V powder, Journal of Materials Processing Technology, 214, 148-157.
  • Guzman, C.F., Duflou, J., Gu, J., Vanhove, H., Flores, P., Ha-braken, M., 2012, Study of the geometrical inaccuracy on a SPIF two-slope pyramid by finite element simulations, International Journal of Solids and Structures, 49, 25, 3594-3604.
  • Hussain, G, Gao, L., 2007, A novel method to test the thinning limits of sheet metals in negative incremental forming, International Journal of Machine Tools & Manufacture, 47, 419-435.
  • Hussain, G., Gaoa L., Dar N.U., 2007, An experimental study on some formability evaluation methods in negative incremental forming, Journal of Materials Processing Technology, 186, 45-53.
  • Isekia, H., Naganawab, T., 2002, Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers, Journal of Ma¬terials Processing Technology, 130-131, 675-679.
  • Jie, Z., Dongqi, Z., Pengwei, W., Gang, W., Feng, L.,Penglong, D., 2014, Numerical simulation research of investment casting for TiB2/A356 aluminum base composite, Rare metal materials and Engineering, 43, 1, 47-51.
  • Jin, Y., Murata, M., 2004, Influence of pitch and cross-sectional ratio of strip of sheet metal on incremental in-plane bending, Journal of Materials Processing Technology, 155-156, 1810-1814.
  • Liu, G., Zhong, Z., Shen, Z., 2014, Influence of reduction distribution on internal defects during cross-wedge-rolling process, Procedia Engineering, 81, 263-267.
  • Luri, R., Luis, C.J., Salcedo, D., Leon, J., Fuertes, J.P., Puertas, I., 2013, FEM analysis of the isothermal forging of a connecting rod from material previously deformed by ECAE, Procedia Engineering, 63, 540-546.
  • Madej, L., Kruzel, F., Cybulka, P., Perzynski, K., Banas, K., 2012, Generation of dedicated finite element meshes for multiscale applications with delaunay triangulation and adaptive finite element - cellular automata algorithms, Computer Methods in Material Science, 12, 2, 85-96.
  • Madej, L., Wang, J., Perzynski, K., Hodgson, P.D., 2014, Numerical modeling of dual phase microstructure behavior under deformation conditions on the basis of digital material representation, Computational Materials Science, 95, 651-662.
  • Mahmoodkhani, Y., Wells, M.A., Parson, N., Poole, W.J., 2014, Numerical modelling of the material flow during ex-trucion of aluminium alloys and transverse weld for¬mation, Journal of Materials Processing Technology, 214, 3, 688-700.
  • Malinowski, Z., Madej, W., Musiał, A., Hajduk, Z., Wolski, A., 2005, Design of manufacturing of welding neck type rings, Metallurgy and foundry engineering, 31, 2, 201-210.
  • Malwad, D.S., Nandedkar, V.M., 2014, Deformation mechanism analysis of single point incremental sheet metal forming, Procedia Materials Science, 6, 1505-1510.
  • Matsumoto, R., Hayashi, K., Utsunomiya, H., 2014, Experi¬mental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advanced pulse ram motion on a servo press, Journal of Materials Processing Technology, 214, 4, 936-944.
  • Merklein, M., Johannes, M., Lechner, M., Kuppert, A., 2014, A review on tailored blanks - production, applications and evaluation, Journal of Materials Processing Technology, 214, 2, 151-164.
  • Moumi, E., Ishkina, S., Kuhfuss, B., Hochrainer, T., Struss, A., Hunkel, M., 2014, 2D-simulation of material flow during infeed rotary swaging using finite element method, Procedia Engineering, 81, 2342-2347.
  • Muszka, K., Madej, L., Majta, J., 2013, The effects of deformation and microstructure inhomogeneities in the Ac¬cumulative Angular Drawing (AAD), Materials Science and Engineering A, 574, 68-74
  • Nam, C, Lee, M., Eom, J., Choi, M., Joun, M., 2014, Finite element analysis model of rotary forging for assembling wheel hub bearing assembly, Procedia Engineering, 81, 2475-2480.
  • Nowak, J., Madej, L., Ziolkiewicz, S., Plewinski, A., Grosman, F., Pietrzyk, M., 2008, Recent development in orbital forging technology, International Journal of Material Forming, 1, 387-390.
  • Obayi, C.S., Tolouei, R., Paternoster, C, Turgeon, S., Okorie,B.A., Obikwelu, D.O., Cassar, G, Buhagiar, J., Mantovani, D., 2015, Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants, Acta Biomaterialia, in press, online available 13.03.2015,http://dx.doi.Org/l 0.1016/j.actbio.2015.01.024
  • Oczos, K.E., Kawalec, A., Ksztartowanie metali lekkich, Wydawnictwo Naukowe PWN, 2012, Warszawa (in Polish).
  • Parvizi, A., Abrinia, K., 2014, A two dimensional upper bound analysis of the ring rolling process with experimental and FEM verifications, International Journal of Mechanical Sciences, 79, 176-181.
  • Pesin, A., Pustovoytov, D., 2014, Finite element modeling of edge defect formation in plate rolling, Procedia Engineering, 81, 132-136.
  • Petrenko, A., Mocilan, M., Soukup, J., 2014, Analysis of core stress during casting, Procedia Engineering, 96, 362-369.
  • Poniatowska, M., 2015, Free-form surface machining error compensation applying 3D CAD machining pattern model, Computer-Aided Design, 62, 227-235.
  • Qiu, C, Yue, S., Adkins, N.J.E., Ward, M., Hassanin, H., Lee, P.D., Withers, P.J., Attallah, M.M., 2015, Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Materials Science and Engineering A, 628,188-197.
  • Rotella, G, Umbrello, D., 2014, Numerical simulation of surface modification in dry and cryogenic machining of AA7075 alloy, Procedia CIRP, 13, 327-332.
  • Schongen, F., Klocke, F., Mattfeld, P., Rjasanow, S., Grzhibovskis, R., 2014, FEM/BEM simulation of cold forging process considering press-tool-workpiece interaction, Procedia Engineering, 81, 2403-2408.
  • Senthil, R., Gnanavelbabu, A., 2014, Numerical analysis on formability of AZ61A magnesium alloy by incremental forming, Procedia Engineering, 97, 1975-1982.
  • Seo, S., Kim, I., Jo, C, Ogi, K., 2007, Grain structure prediction of Ni-base superalloy castings using the cellular automa-ton-finite element method, Materials Science and Engi-neering A, 449-451, 713-176.
  • Smojver, I., Ivancevic, D., 2010, Numerical simulation of bird strike damage prediction in airplane flap structure, Composite Structures, 92, 9, 2016-2026.
  • Sohlberg, B., 2005, Hybrid grey box modelling of pickling process, Control Engineering Practice, 13, 9, 1093-1102.
  • Song, H., Zhang, S., Cheng, M., 2014, Dynamic globularization prediction during cogging process of large size TCI 1 ti-tanium alloy billet with lamellar structure, Defence Technology, 10, 1,40-46.
  • Stanistreet, T.F., Allwood, J.M., Willoughby, A.M., 2006, The design of a flexible model ring rolling machine, Journal of Materials Processing Technology, 177, 630-633.
  • Sun, Q., Chen, J., Li, X., Pan, H., 2014, Parametric study of edge crack of silicon steel strip in cold rolling based on a shear modified GTN damage model, Procedia Materials Science, 3, 1632-1637.
  • Szyndler, J., Grosman, F., Tkocz, M., Madej, L., 2015, Numerical and experimental investigation of the innovatory incremental forming process dedicated for the aerospace industry, Metallurgical and Materials Transactions A, in press.
  • Szyndler, J., Madej, L., 2015, Material model development for numerical simulation of the incremental forming process, Conf. Mat. of CMM 21s' International Conference on Computer Methods in Mechanics, in press.
  • Tingting, Z., Guoning, R., Jinhua P., 2014, Numerical simulation of three dimensional flow fields for extrusion process of GR-35 double-base propellant, Procedia Engineering, 84, 920-926.
  • Watson, M., Long, H., 2014, Wrinkling failure mechanics in metal spinning, Procedia Engineering, 81, 2391-2396.
  • Wengfei, P., Wenjing, Y., Sijia, J., Xuedao, S., Baoshou, S., Yuzhen, L., Lihua, Z., 2014, Analysis of cross wedge rolling of spiral shaft parts, Procedia Engineering, 81, 322-327.
  • Wislicki, T., 1964, Technologia budowy platowcow, Wydawnictwa Naukowo - Techniczne, Warszawa (in Polish).
  • Wong, C.C., Dean, T.A., Lin, J., 2004, Incremental forming of solid cylindrical components using flow forming principles, Journal of Materials Processing Technology, 153-154, 60-66.
  • Xia, Q., Xiao, G, Long, H., Cheng, X., Sheng, X., 2014, A review of process advancement of novel metal spinning, International Journal of Machine Tools and Manufacture, 85, 100-121.
  • Xiaotao, G, Fan, Y., 2012, Research of PEEQ for conical ring with outer steps ring rolling, Physics Procedia, 25, 257-261.
  • Yoon, S.J., Yangl D.Y., 2005, An incremental roll forming process for manufacturing doubly curved sheets from general quadrilateral sheet blanks with enhanced process features, CIRP Annals - Manufacturing Technology, 54, 221-224.
  • Zahalka, M., 2014, Modal analysis of hydraulic press frames for open die forging, Procedia Engineering, 69, 1070-1075.
  • Zenia, S., Ben Ayed, L., Nouaru, M., Delameziere, A., 2015, Numerical prediction of the chip formation process and induced damage during the machining of carbon/epoxy composites, International Journal of Mechanical Sciences, 90, 89-101.
  • Zhang, Q., Jin, K., Mu, D., Ma, P., Tian, J., 2014, Rotary swaging forming process of tube workpieces, Procedia Engineering, 81, 2336-2341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb8d10e5-49ec-462b-b8c5-ea5834b8a16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.