PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Iron-containing phases in metallurgical and coke dusts as well as in bog iron ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
Several samples of dusts from steel and coke plants (collected mostly with electro filters) were subjected to the investigation of content of mineral phases in their particles. Additionally, sample of bog iron ore and metallurgical slurry was studied. Next, the magnetic susceptibility of all the samples was determined, and investigations of iron-containing phases were performed using transmission Mössbauer spectrometry. The values of mass-specific magnetic susceptibility  varied in a wide range: from 59 to above 7000 × 10−8 m3kg−1. The low values are determined for bog iron ore, metallurgical slurry, and coke dusts. The extremely high  was obtained for metallurgical dusts. The Mössbauer spectra and X-ray diffraction patterns point to the presence of the following phases containing iron: hematite and oxidized magnetite (in coke and metallurgical dusts as well as metallurgical slurry), traces of magnetite fi ne grains fraction (in metallurgical dusts), amorphous glassy silicates with paramagnetic Fe3+ and Fe2+ ions, traces of pyrrhotite (in coke dusts), α-Fe and nonstoichiometric wüstite (in metallurgical slurry), as well as ferrihydrite nanoparticles (in bog iron ore). For individual samples of metallurgical dusts, the relative contributions of Fe2+/3+ ions in octahedral B sites and Fe2+ ions in tetrahedral A sites in magnetite spinel structure differs considerably.
Czasopismo
Rocznik
Strony
187--195
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
autor
  • Institute of Environmental Engineering of the Polish Academy of Sciences, 34 Skłodowska-Curie Str., 41-819 Zabrze, Poland
autor
  • Department of Land Protection, Opole University, 22 Oleska Str., 45-052 Opole, Poland
autor
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
autor
  • Department of Physics, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
  • Institute of Environmental Engineering of the Polish Academy of Sciences, 34 Skłodowska-Curie Str., 41-819 Zabrze, Poland
Bibliografia
  • 1. Magiera, T., Jabłońska, M., Strzyszcz, Z., & Rachwał, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ., 45, 281–290. DOI: 10.1016/j.atmosenv.2011.04.076.
  • 2. Magiera, T., Gołuchowska, B., & Jabłońska, M. (2013). Technogenic magnetic particles in alkaline dusts from power and cement plants. Water Air Soil Pollution, 224, 1389(17pp.). DOI: 10.1007/s11270-012-1389-9.
  • 3. Rachwał, M., Magiera, T., & Wawer, M. (2015). Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere, 138, 863–873. DOI: 10.1016/j.chemosphere.2014.11.077.
  • 4. Szuszkiewicz, M., Magiera, T., Kapička, A., Petrovský, E., Grison, H., & Gołuchowska, B. (2015).Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland. J. Appl. Geophys., 116, 84–92. DOI: 10.1016/j.jappgeo.2015.02.027.
  • 5. Heller, F., Strzyszcz, Z., & Magiera, T. (1998). Magnetic record of industrial pollution on forest soils of Upper Silesia (Poland). J. Geophys. Res., 103(B8), 17767–17774. DOI: 10.1029/98JB01667.
  • 6. Gupta, S., Dubikova, M., French, D., & Sahajwalla, V. (2007). Characterization of the origin and distribution of the minerals and phases in metallurgical cokes. Energy Fuels, 21, 303–313. DOI: 10.1021/ef060437d.
  • 7. Vaughan, D. J., Pattrick, R. A. D., & Wogelius, R. A. (2002). Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineral. Mag., 66(5), 653–676. DOI: 10.1180/0026461026650054. 8. Thompson, R., & Oldfield, F. (1986). Environmental magnetism. London: Allen and Unwin.
  • 9. Rzepa, G., Bajda, T., Gaweł, A., Debiec, K., & Drewniak, L. (2016). Mineral transformations and textural evolution during roasting of bog iron ores. J. Therm. Anal. Calorim., 123(1), 615–630. DOI: 10.1007/s10973-015-4925-1.
  • 10. Dearing, J. A. (1994). Environmental magnetic susceptibility – using the Bartington MS2 System. Kenilworth, England: Chi Publishing.
  • 11. Szumiata, T., Gawroński, M., Górka, B., Brzózka, K., Świetlik, R., Trojanowska, M., & Strzelecka, M. (2013). Chemical, magnetic and Mössbauer effect analysis of road dust from expressway. Nukleonika, 58(1), 107–110.
  • 12. Szumiata, T., Gzik-Szumiata, M., Brzózka, K., Górka, B., Gawroński, M., Świetlik, R., & Trojanowska, M. (2015). Iron-containing phases in fly ashes from different combustion systems. Nukleonika, 60(1), 151–154. DOI: 10.1515/nuka-2015-0030.
  • 13. Oh, S. J., Cook, D. C., & Townsend, H. E. (1998). Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfi ne Interact., 112, 59–65.
  • 14. Brett, M. E., & Graham, M. J. (1986). An electron back-scattering Mössbauer spectroscopy study of thin magnetite films. J. Magn. Magn. Mater., 60, 175–181. DOI: 10.1016/0304-8853(86)90098-3.
  • 15. Dézsi, I., Fetzer, Cs., Gombkötő, Á., Szűcs, I., Gubicza, J., & Ungár, T. (2008). Phase transition in nanomagnetite. J. Appl. Phys., 103, 104312-1-104312-5. DOI: 10.1063/1.2937252.
  • 16. Gorski, Ch. A., & Scherer, M. M. (2010). Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. Am. Miner., 95, 1017–1026. DOI: 10.2138/am.2010.3435 1017.
  • 17. Da Costa, G. M., De Grave, E., Bowen, L. H., Vandenberghe, R. E., & De Bakker, P. M. A. (1994). The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clay Clay Min., 42(5), 628–633.
  • 18. Layek, S., Pandey, An., Pandey, Ash., & Verma, H. C. (2010). Synthesis of γ-Fe2O3 nanoparticles with crystallographic and magnetic texture. Int. J. Eng. Sci. Technol., 2(8), 33–39. DOI: dx.doi.org/10.4314/ijest.v2i8.63778.
  • 19. Haley, G., Mullen, J. G., & Honigt, J. M. (1989). First order change in hyperfine interaction at the Verwey transition in magnetite. Solid State Commun., 69(3), 285–287. DOI: 10.1016/0038-1098(89)90852-1.
  • 20. Lee, S. W., Kim, S. J., & Kim, Ch. S. (2006). Superexchange interactions in MgFe2O4. J. Korean Phys. Soc., 48(4), 583–588.
  • 21. Omer, M. I. M., Elbadawi, A. A., & Yassin, O. A. (2013). Synthesis and structural properties of MgFe2O4 ferrite nano-particles. JAIS-J. Appl. Ind. Sci., 1(4), 20–23.
  • 22. Antao, S. M., Hassan, I., & Parise, J. B. (2005). Cation ordering in magnesioferrite, MgFe2O4, to 982°C using in situ synchrotron X-ray powder diffraction. Am. Miner., 90(1), 219–228. DOI: 10.2138/am.2005.1559.
  • 23. Leimalm, U., Lundgren, M., Ökvist, L. S., & Björkman, B. (2010). Off-gas dust in an experimental blast furnace; Part 1: Characterization of flue dust, sludge and shaft fines. ISIJ Int., 50(11), 1560–1569. DOI:doi.org/10.2355/isijinternational.50.1560.
  • 24. Hafner, S., & Kalvius, M. (1966) The Mössbauer resonance of Fe57 in troilite (FeS) and pyrrhotite (Fe 0.88S). Z. Krist.-Cryst. Mater., 123, 443–458.
  • 25. Navarra, A., Graham, J. T., Somot, S., Ryan, D. H., & Finch, J. A. (2010). Mössbauer quantification of pyrrhotite in relation to self-heating. Miner. Eng., 23, 652–658. DOI: 10.1016/j.mineng.2010.03.022.
  • 26. Flanders, P. J. (1994). Collection, measurements and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.
  • 27. Anshits, N. N., Vereshchagina, T. A., Bayukov, O. A., Salanov, A. N., & Anshits, A. G. (2005). The nature of nanoparticles of crystalline phases in cenospheres and morphology of their shells. Glass Phys. Chem., 31(3), 306–315.
  • 28. Taneja, S. P. (2004). Mössbauer studies of thermal power plant coal and fly ash. Hyperfine Interact., 153, 83–90.
  • 29. Ram, L. C., Tripathi, P. S. M., & Mishra, S. P. (1995). Mössbauer spectroscopic studies on the transformation of iron-bearing minerals during combustion of coals: Correlation with fouling and slagging. Fuel Process. Technol., 42, 47–60.
  • 30. Bajukov, O. A., Anshits, N. N., Petrov, M. I., Balaev, A. D., & Anshits, A. G. (2009). Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fly ashes. Mater. Chem. Phys., 114, 495–503. DOI: 10.1016/j.matchemphys.2008.09.061.
  • 31. Park, J. -Ch., Kim, D., Lee, Ch. -S., & Kim, D. -K. (1999). A new synthetic route to wüstite. Bull. Korean Chem. Soc., 20(9) 1005–1008.
  • 32. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127–131.
  • 33. Vereš, J., Jakabský, Š., & Šepelák, V. (2010). Chemical, physical, morphological and structural characterization of blast furnace sludge. Diffusion Fundamentals, 12, 88–91.
  • 34. Wang, X., Zhu, M., Koopal, L. K., Li, W., Xu, W., Liu, F., Zhang, J., Liu, Q., Feng, X., & Sparks, D. L. (2016). Effects of crystallite size on the structure and magnetism of ferrihydrite. Environ.-Sci. Nano, 3, 190–202. DOI: 10.1039/c5en00191a.
  • 35. Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., Smith, S. C., Dohnalkova, A. C., & Russell, C. K. (2003). Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am. Miner., 88, 1903–1914. DOI: 0003-004X/03/1112–1903$05.00.
  • 36. Michel, F. M., Ehm, L., Antao, S. M., Lee, L. P., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., & Parise, J. B. (2007). The structure of ferrihydrite, a nanocrystalline material. Science, 316(5832), 1726–1729. DOI: 10.1126/science.1142525.
  • 37. Stevens, J. G., Khasanov, A. M., Miller, J. W., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb8c11ae-0fc7-4df4-b5b0-60104a3c0574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.