PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bi-directional Contactless Inductive Power Transfer System Modeling and verifying

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Dwukierunkowa bezprzewodowa transmisja mocy-model i eksperymentalna weryfikacja
Języki publikacji
EN
Abstrakty
EN
This paper presents an approach for the modeling of bi-directional contactless inductive power transfer (CIPT) system based on the generalized state space averaging (GSSA) method. By using the proposed method, a dynamic model can be realized by a linear model. The validity of the model is verified by theoretical analysis, simulations and experimental results of a 2kW prototype bi-directional CIPT system with a 1mm airgap. Results indicate that the proposed model is an ideal analysis tool for CIPT system .
PL
Zaprezentowano system bezprzewodowej, dwukierunkowej transmisji mocy CIPT. Metoda była zweryfikowana teoretycznie, przez symulacje oraz eksperymentalnie w systemie transmisji mocy 2 kW przez szczelinę 1 mm.
Rocznik
Strony
294--297
Opis fizyczny
Bibliogr. 18 poz., schem., wykr.
Twórcy
autor
  • Key Laboratory of Control of Power Transmission and Transformation, Ministry of Education Shanghai Jiao Tong University
autor
  • Key Laboratory of Control of Power Transmission and Transformation, Ministry of Education Shanghai Jiao Tong University
autor
  • Key Laboratory of Control of Power Transmission and Transformation, Ministry of Education Shanghai Jiao Tong University
Bibliografia
  • [1]. M. H. Nehrir, C. Wang, and S. R. Guda, Alternative Energy Distributed Generation: Need for Multi-Source Operation, Proc. of North American Power Symposium, 2006, pp. 547-551.
  • [2]. R. Ramakumar and P. Chiradeja, Distributed generation and renewable energy ststems, Proc. of IEEE Energy Conversion Engineering Conf., 2002, pp. 716-724.
  • [3]. J. Balakrishnan, Renewable Energy and Distributed Generation in Rural Villages, Proc. of IEEE Industrial and Information Systems Conf., 2006, pp. 190-195.
  • [4]. Schuder, J. C., Powering an artificial heart: birth of the inductively coupled-radio frequency system in 1960, Artif. Organs. vol. 26 n. 11, pp. 909-915, November 2002.
  • [5]. Kelley, A. W., Owens, W. R., Connectorless power supply for an aircraft-passenger entertainment system, IEEE Trans. Power Electron., vol. 4 n. 3, pp. 348-354, 1989.
  • [6]. Egan, M. G., O’ Sullivan, D. L., Hayes, J. G., Willers, M. J., Henze, C. P., Power-factor-corrected single-stage inductive charger for electric vehicle batteries, IEEE Trans. Ind. Electron., vol. 54 n. 2, pp. 1217-1226 2007.
  • [7]. Hirai, J., Kim, T.W., Kawamura, A. Wireless transmission of power and information for cableless linear motor drive, IEEE Trans. on Power Electron., vol. 15 n. 1, pp. 21-26 2000.
  • [8]. Kawamura, A., Ishioka, K., Hirai, J., Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator application, IEEE Trans. On Ind. Appl., vol. 32 n. 3, Appl. 1996, pp. 503-508.
  • [9]. Jackson, D.K. Inductively-coupled power transfer for eletromechanical systems, Ph.D dissertation, Massachusetts Institute of Technology, U.S.A. 1998.
  • [10]. Albert, E., Contactless charging and communication for electric vehicles, IEEE Industry Applications Magazine, vol. 1 n.6, 1995, pp: 4-11.
  • [11]. Chwei-Sen Wang, Covic, G. A., Stielau, O. H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems, IEEE Trans. Ind. Electron., vol. 51 n. 1, pp. 148-156, February 2004.
  • [12]. Chwei-Sen Wang, Stielau, O. H. and Covic, G. A. Design considerations for a contactless electric vehicle battery charger, IEEE Trans. Ind. Electron., vol. 52 n. 5, pp. 1308-1314, October 2005.
  • [13]. U.K. Madawala and D. J. Thrimawithana, A two-way inductive power interface for single loads, Proc. of IEEE Industrial Technology Conf., 2010, pp.673-678.
  • [14]. H. H. Wu, A. P. Hu, S. C. Malpas, and D. M. Budgett, Determing optimal tuning capacitor values of TET system for achieving maximum power transfer, Electronics Letters, vol. 45, pp. 448-449, Apr 2009.
  • [15]. J. Gyu Bum and B. H. Cho, An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer, Power Electronics, IEEE Transactions on, vol. 13, pp. 1013-1022, 1998.
  • [16]. Sanders, S. R., Noworolski, J. M., Liu, X. Z. and Verghese, G. C., Generalised averaging method for power conversion circuits, IEEE Transactions on Power Electronics, vol. 6 n. 2, April, 1991.
  • [17]. Wan Fang, Wei Liu, Jie Qian, Houjun Tang and Pengsheng Ye, Modeling and simulation of a transcutaneous energy transmission system used in artificial organ implants, Artif. Organs. vol. 33 n. 12, pp. 1069-1074, 2009.
  • [18]. Wan Fang, Houjun Tang, and Wei Liu, Modeling and analyzing an inductive contactless power transfer system for artificial hearts using the generalized state space averaging method, Journal of Computational and Theoretical Nanoscience, vol. 4, pp. 1-5, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb889381-77cf-4d50-9c66-a94155e0c4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.