PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous adjustment of AVR and optimized PSS outputs effect in power systems for stability improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the problems related to low-frequency oscillations (LFOs) and power systems complexities, using intelligent methods and optimization techniques is essential for solving power system stabilizer (PSS) problems. In this paper, power system stabilizer, based on the PSOPSS, is designed to set the parameters of PSS. Then, the FLC is designed to simultaneously weighting the automated voltage regulator and power system stabilizer outputs, to adjust the excitation controller facing with disturbance. The ability to optimize particle swarm algorithm, in combination with FLC ability to solve complex and nonlinear problems, will effectively improve the stability of the power system. Initially, the simulation was performed on a single machine system in which the PSS optimal parameters were obtained using particle swarm optimization (PSO). Afterwards, with simultaneous regulation of the voltage and damping by the fuzzy logic controller, the effectiveness of the proposed approach, compared with the PSS based on the linear optimization controller, is confirmed. Next, more effective results can be obtained on a multi-machine system with effective placement of the FLPSS, compared with the conventional PSS and with simultaneous adjustment of the output weights of voltage and damping controllers using FLC. The efficiency of the proposed method in response to a variety of disturbances is determined.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Najafabad Branch, Islamic Azad University Najafabad, 8514143131, Iran
  • Department of Electrical Engineering, Najafabad Branch, Islamic Azad University Najafabad, 8514143131, Iran
Bibliografia
  • [1] Yaghooti A., Buygi M. 0., Shanechi M. H. M.: Designing coordinated power system stabilizers: A reference model-based controller design. IEEE Trans. on Power Systems, 31(4), 2016, 2914-2924.
  • [2] Bhukya J., Mahajan V.: Mathematical modelling and stability analysis of PSS for damping LFOs of wind power system. !ET Renewable Power Generation, 13 (1), 2019, 103-115.
  • [3] Liu Y., Wu Q., Kang H., Zhou X.: Switching power system stabilizer and its coordination for enhancement of multi-machine power system stability. CSEE Journal of Power and Energy Systems. 2 (2), 2016, 98-106.
  • [4] Farhang P., Mazlumi K.: Low-frequency power system oscillation damping using HBAbased coordinated design of IPFC and PSS output feedback controllers. Trans. of the Institute of Measurement and Control, 36 (2), 2014, 184-195.
  • [5] Shahgholian G., Movahedi A.: Coordinated control of TCSC and SVC for system stability enhancement using ANFIS method. International Review on Modelling and Simulations, 4(5), 2011, 2367-2375, Oct. 2011.
  • [6] Ghaedi H., Shahgholian G., Hashemi M.: Comparison of the effects of two flatness-based control methods for STATCOM on improving stability in power systems including DFIG based wind farms. Iranian Electric Industry Journal of Quality and Productivity, 8 (15), 2019, 81-90.
  • [7] Shahgholian G., Hamidpour H., Movahedi A.: Transient stability promotion by FACTS controller based on adaptive inertia weight particle swarm optimization method, Advances in Electrical and Electronic Engineering, 16 (1), 2018, 57-70.
  • [8] Prakash T., Singh V.P., Mohanty S.R.: A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable timedelays. International Journal of Electrical Power and Energy Systems, 105, 2019, 131-141.
  • [9] Shahgholian G., A. Movahedi A.: Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission and Distribution, 10 (8), 2016, 1860-1868.
  • [10] Soliman H. M.: Resilient observer-based power system stabilizers. Trans. of the Institute of Measurement and Control. 38 (8), 2016, 981-991.
  • [11] Shahgholian G., Arezoomand M., Mahmoodian, H.: Analysis and simulation of the singlemachine infinite-bus with power system stabilizer and parameters variation effects. Proceeding of the IEEE/ICIAS, 2007, 167-171.
  • [12] Jaleel J., Thanvy N.: A comparative study between PI, PD, PID and lead-lag controllers for power system stabilizer. Proceeding of the IEEE/ICCPCT, 2013, 456-460.
  • [13] Fang D., Yuan S., Wang Y., Chung T. S.: Coordinated parameter design of ST ATC OM stabilizer and PSS using MSSA algorithm. IET Generation, Transmission and Distribution, l (4), 2007, 670-678.
  • [14] Sheeba R., Jayaraju M., Sundareswaran K.: Performance enhancement of power system stabilizer through colony of foraging ants. Electric Power Components and Systems. 42 (10), 2014, 1016-1028.
  • [15] Naresh G., Raju M. R., Narasimham, S. V.: Coordinated design of power system stabilizers and TCSC employing improved harmony search algorithm. Swarm and Evolutionary Computation. 27, 2016, 169-79.
  • [16] Pothiya S., Ngamroo I., Runggeratigul S., Tantaswadi P.: Design of optimal fuzzy logic-based PI controller using multiple tabu search algorithm for load frequency control. International Journal of Control, Automation, and Systems. 4 (2), 2006, 155-164.
  • [17] Panda S., Yegireddy N. K., Mahapatra S. K.: Hybrid BFOA-PSO approach for coordinated design of PSS and SSSC-based controller considering time delays. International Journal of Electrical Power and Energy Systems, 49, 2013, 221-33.
  • [18] Shafiullah M, Rana M.J., Shahriar M.S., Zahir, M.H.: Low-frequency oscillation damping in the electric network through the optimal design of UPFC coordinated PSS employing MGGP. Measurement, 138, 2019, 118-131.
  • [19] Hassan L., Moghavvemi M., Almurib H., Muttaqi K., Ganapathy V.: Optimization of power system stabilizers using participation factor and genetic algorithm. International Journal of Electrical Power and Energy Systems, 55, 2014, 668-79.
  • [20] Ni Z., Tang Y., Sui X., He H., Wen J.: An adaptive neuro-control approach for multi-machine power systems. International Journal of Electrical Power and Energy Systems, 7 5, 2016, 108-16.
  • [21] Rahmatian M., Seyedtabaii S.: Multi-machine optimal power system stabilizers design based on system stability and nonlinearity indices using hyper-spherical Search method. International Journal of Electrical Power and Energy Systems, 105, 2019, 729-740.
  • [22] Shahgholian G., Karimi H., Mahmoodian H.: Design a power system stabilizer based on fuzzy sliding mode control theory. International Review on Modelling and Simulations, 5 (5), 2012, 2191-2196.
  • [23] Shahgholian G., Movahedi A: Coordinated design of thyristor-controlled series capacitor and power system stabilizer controllers using velocity update relaxation particle swarm optimization for two-machine power system stability. Revue Roumaine Des Sciences Techniques, 59 (3), 2014, 291-301.
  • [24] Khadanga R., Satapathy J.: Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO-GSA algorithm. International Journal of Electrical Power and Energy Systems, 71, 2015, 262-73.
  • [25] Shahgholian G., Fazeli-Nejad S., Moazzami M., Mahdavian M., Azadeh M., Janghorbani M., Farazpey S.: Power system oscillations damping by optimal coordinated design between PSS and STATCOM using PSO and ABC algorithms. Proceeding of the IEEE/ECTICON, 2016, pp. 1-6.
  • [26] Sambariya D., Prasad R.: Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. International Journal of Electrical Power and Energy Systems, 61, 2014, 229-38.
  • [27] Keumarsi V., Simab M., Shahgholian G.: An integrated approach for optimal placement and tuning of power system stabilizer in multi-machine systems. International Journal of Electrical Power and Energy Systems, 63, 2014, 132-139.
  • [28] Derafshian M, Amjady N : Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines. Energy, 84, 2015, 1-4.
  • [29] Jabari E., Shahgholian G.: PSO Integral-Derivative Stabilizer Design for Improving Damping in Multi-Machine Power System. International Journal Natural and Engineering Sciences, 12 (2), 2019, 40-48.
  • [30] Linda, M. M., Nair N. K.: Optimal design of multi-machine power system stabilizer using robust ant colony optimization technique. Trans. of the Institute of Measurement and Control, 34 (7), 829-840.
  • [31] Bouchama Z., Essounbouli N., Harmas M. N., Hamzaoui A., Saoudi K.: Reaching phase free adaptive fuzzy synergetic power system stabilizer. International Journal of Electrical Power and Energy Systems, 77, 2016, 43-49.
  • [32] Lin, Y.: Proportional plus derivative output feedback based fuzzy logic power system stabiliser. International Journal of Electrical Power and Energy Systems, 44 (1), 2013, 301-307.
  • [33] Sun Z., Wang N., Srinivasan D., Bi Y.: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm. International Journal of Electrical Power and Energy Systems, 62, 2014, 19-28.
  • [34] Adjeroud F., Djahli F., Mayouf A., Devers T.: A coordinated genetic based type-2 fuzzy stabilizer for conventional and superconducting generators. Electric Power Systems Research, 129, 2015, 51-61.
  • [35] Sharifian A., Sharifian S.: A new power system transient stability assessment method based on Type-2 fuzzy neural network estimation. International Journal of Electrical Power and Energy Systems, 64, 2015, 71-87.
  • [36] Cloughley M., Muttaqi K. M., Du H.: Damping of low-inertia machine oscillations using Takagi-Sugeno fuzzy stabiliser tuned by genetic algorithm optimisation to improve system stability. IET Generation, Transmission and Distribution, 8 (2), 2014, 339-352.
  • [37] Shahgholian, G.: Review of power system stabilizer: Application, modeling, analysis and control strategy. International Journal on Technical and Physical Problems of Engineering, 5 (3), 2013, 41-52.
  • [38] Zhang H., Shi F., Liu Y.: Enhancing optimal excitation control by adaptive fuzzy logic rules. International Journal of Electrical Power and Energy Systems, 63, 2014, 226-35.
  • [39] Kahouli 0., Jebali M., Alshammari B., Abdallah H. H.: PSS design for damping low-frequency oscillations in a multi-machine power system with penetration of renewable power generations. IET Renewable Power Generation, 13 (1), 2019, 116-127.
  • [40]Jalaluddin M., Saikumar H.: Performance evaluation of multi machine power system with Fuzzy based Power System Stabilizer. Proceeding of the IEEE/TAP Energy, 2015, 182-186.
  • [41] Ahmadi-Zebarjad M., Shahgholian G.: Application of a nonlinear hybrid controller in multimachine power system based on a power system stabilizer, Journal of Power Technologies, 97 (4), 2017, 295-301.
  • [42] Ramadan H. S., Bendary A. F., Nagy S.: Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators. International Journal of Electrical Power and Energy Systems, 84, 2017, 143-152.
  • [43] Jalali S., Shahgholian G.: Designing of power system stabilizer based on the root locus method with lead-lag controller and comparing it with PI controller in multi-machine power system. Journal of Power Technologies, 98 (1), 2018, 45-56.
  • [44] Kundur P.: Power system stability and control, New York: McGraw-Hill, 1993.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb81dda5-d34f-418c-8dd9-4cfc66d1fec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.