Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Adsorpcyjne usuwanie sulfametoksazolu z wody na kompozytach węglowo-mineralnych
Języki publikacji
Abstrakty
The objective of this work was to synthesize new carbon-mineral composites and evaluate their ability to remove sulfamethoxazole from water. Carbon-halloysite (CHS1a,b, CHNT1a,b) and carbon-kaolinite (CKT1a,b) composites were prepared using fruit pomace waste as a carbon precursor. In addition, raw halloysite (HS), halloysite nanotubes (HNT), and kaolinite (KT) were used as templates in the carbonization process conducted under a nitrohen atmosphere at two temperature values: 500oC and 800oC. The morphology and structural characteristics of the obtained composites were investigated using SEM EDX, FT-IR, Raman spectroscopy, and low-temperature nitrogen adsorption methods. All the composites were mesoporous materials. SEM and FTIR results confirmed that the surfaces of HNT, HS, and KT were covered with carbon. The highest carbon content was observed in composites prepared with HNT, suggesting that the nanotube structure enhances carbon deposition. The adsorption of sulfomethoxazole on both the newly synthesized carbon-mineral composites and the unmodified minerals was also studied. The removal efficiency of sulfamethoxazole increased significantly for composites such as CHS1a, CHNT1a, and CKT1a obtained at 800oC, compared to the raw minerals. The optimal conditions for sulfamethoxazole removal, achieving a maximum efficiency of 84%, were found using CHS1a with a dosage of 6 g/dm3 and an initial antibiotic concentration of 20 mg/dm3. The adsorption kinetics of sulfamethoxazole on the most effective adsorbent, CHS1a, was described using the pseudo-second-order kinetic model and the multi-center Langmuir adsorption model. CHS1a composite can be considered a promising adsorbent for the removal of sulfamethoxazole from water.
Celem tej pracy była synteza nowych kompozytów węglowo-mineralnych i ich wykorzystanie do usuwania sulfametoksazolu z wody. Kompozyty węglowo-haloizytowe (CHS1a,b, CHNT1a,b) i węglowo-kaolinitowe (CKT1a,b) otrzymano z odpadowych wytłoków owocowych jako prekursora węgla. Ponadto surowy halloizyt (HS), nanorurki halloizytowe (HNT) i kaolinit (KT) wykorzystano jako nośniki w procesie karbonizacji w atmosferze N2 dla dwóch temperatur: 500oC i 800oC. Morfologię i charakterystykę strukturalną otrzymanych kompozytów zbadano przy użyciu metod SEM EDX, FT-IR i spektroskopii Ramana oraz metod adsorpcji azotu w niskiej temperaturze. Wszystkie kompozyty były materiałami mezoporowatymi. Wyniki SEM i FTIR potwierdziły, że powierzchnia HNT, HS i KT jest pokryta węglem. Najwyższa zawartość węgla w kompozytach z HNT wskazuje, że struktura nanorurek wpływa na osadzanie węgla na ich powierzchni. Badano również adsorpcję sulfometoksazolu na nowych kompozytach węglowo-mineralnych i minerałach niemodyfikowanych. Efektywność usuwania sulfametoksazolu znacznie wzrosła w przypadku takich kompozytów jak: CHS1a, CHNT1a i CKT1a otrzymanych w temperaturze 800oC w porównaniu do minerałów surowych. Optymalne warunki usuwania sulfametoksazolu, umożliwiające najwyższą efektywność usuwania 84%, obejmują zastosowanie masy adsorbentu CHS1a wynoszącej 6 g/dm3 przy początkowym stężeniu roztworu antybiotyku 20 mg/dm3. Proces adsorpcji sulfametoksazolu na najlepszym adsorbencie CHS1a opisuje model kinetyczny pseudo-drugiego rzędu i wielocentrowy model adsorpcji Langmuira. Kompozyt CHS1a można stosować jako potencjalny adsorbent do usuwania sulfametoksazolu z wody.
Czasopismo
Rocznik
Tom
Strony
40--53
Opis fizyczny
Bibliogr. 56 poz., fot., tab., wykr.
Twórcy
autor
- Jan Kochanowski University Kielce, Poland
autor
- Jan Kochanowski University Kielce, Poland
autor
- Jan Kochanowski University Kielce, Poland
autor
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Poland
autor
- Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland
Bibliografia
- 1. Anadao, P., Pajolli, I.L.R., Hildebrando, E.A. & Wiebeck, H. (2014). Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay, Advanced Powder Technology 25, pp. 926-932. DOI.10.1016/j.apt.2014.01.010
- 2. Avisa,r D., Primor, O., Gozlan, I. & Mamane, H. (2010). Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water, Air, & Soil Pollution, 209, pp.439-450. DOI:10.1007/s11270-009-0212-8
- 3. Bakandritsos, A., Kouvelos, E., Steriotis, T. & Petridis, D. (2005). Aqueous and Gaseous Adsorption from Montmorillonite-Carbon Composites and from Derived Carbons, Langmuir, 21, pp. 2349-2355. DOI. 10.1021/la047495g
- 4. Balarak, D., Baniasadi, M., Lee, S.M. & Shim, M.J. (2021). Ciprofloxacin adsorption onto azolla filiculoides activated carbon from aqueous solutions, Desalination and Water Treatment, 218, pp. 444-453. DOI.10.5004/dwt.2021.26986
- 5. Bandura, L., Białoszewska, M., Leiviskä, T. & Franus, M. (2022). The role of zeolite structure in its -cyclodextrin modification and tetracycline adsorption from aqueous solution: charactersistics and sorption mechanism, Materials, 15, p. 6317. DOI.10.3390/ma15186317
- 6. Bernal, V., Erto, A., Giraldo, L. & Moreno-Piraján, J.C. (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22, p. 1032. DOI.10.3390/molecules22071032
- 7. Biancullo, F., Moreira, N.F.F., Ribeiro, A.R., Manaia, C.M., Faria, J.L., Nunes, O.C., Castro-Silva, S.M. & Silva, A.M.T. (2019). Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents, Chemical Engineering Journal, 367, p. 304. DOI.10.1016/j.cej.2019.02.012
- 8. Chen, Y., Li, M., Gao, W., Guan, Y., Hao, Z. & Liu, J. (2024). Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters, Journal of Environmental Sciences, 146, pp. 251-263. DOI.10.1016/j.jes.2023.10.011
- 9. Chen, L.-F., Liang, H.-W., Lu,Y., Cui, C.-H. & Yu, S.-H. (2011). Synthesis of an Attapulgite Clay@Carbon Nanocomposite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions fromWater, Langmuir, 27, pp. 8998-9004. DOI.10.1021/la2017165
- 10. Cheng, H., Frost, R.L., Yang, J., Liu, Q. & He, J. (2010). Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochimica Acta, Part A, 77, pp. 1014-1020. DOI.10.1016/j.saa.2010.08.039
- 11. De Oliveira, T., Fernandez, E. L., Fougère, E., Destandau, M., Boussafir, M., Sohmiya, M., Sugahara, Y. & Guégan, R. (2018). Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment, ACS Omega, 3, pp. 15332-15342.
- 12. Evers, M., Lange, R.-L., Heinz, E. & Wichern, M. (2022). Simultaneous powdered activated carbon dosage for micropollutant removal on a municipal wastewater treatment plant compared to the efficiency of a post treatment stage, Journal of Water Process Engineering, 47, p. 102755. DOI.10.1016/j.jwpe.2022.102755
- 13. Freundlich, H.M.F. (1906). Over the adsorption in solution, Zeitschrift für Physikalische Chemie, 57, pp. 385-470.
- 14. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, pp. 34-41. doi.org 10.24425/aep.2022.140764
- 15. Gülenay Hacıosmanoğlu, G., Mejías, C., Martín, J., Santos, J. L., Aparicio, I. & Alonso, E. (2022). Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review, Journal of Environmental Management, 317, p. DOI.115397. 10.1016/j.jenvman.2022.115397
- 16. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes, Process Biochemistry, 34, pp. 451-465. DOI.10.1016/S0032-9592(98)00112-5
- 17. Hu, W., Niu, Y., Dong, K. & Wang, D. (2022). Removal of sulfamethoxazole from aqueous solution onto bagasse derived activated carbon: Response surface methodology, isotherm and kinetics studies, Journal of Molecular Liquids, 347, p. 11814. DOI.10.1016/j.molliq.2021.118141
- 18. Jiang, T., Wu, W., Ma, M., Hu, Y. & Li, R. (2024). Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades, Science of The Total Environment, 951, p. 175664. DOI.10.1016/j.scitotenv.2024.175664
- 19. Jiang, L., Zhang, C., Wei, J., Tjiu, W., Pan, J., Chen, Y. & Liu, T. Surface Modifications of Halloysite Nanotubes with Superparamagnetic Fe3O4 Nanoparticles and Carbonaceous Layers for Efficient Adsorption of Dyes in Water Treatment (2014). Chemical Research in Chinese Universities, 30, pp. 971-977. DOI.10.1007/s40242-014-4218-4.
- 20. Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment, Applied Clay Science, 35, pp. 17-24. DOI.10.1016/j.clay.2006.07.002.
- 21. Kayal, A. & Mandal, S. (2022). Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution, Environmental Monitoring and Assessment, 194, p. 639. DOI.10.1007/s10661-022-10314-2.
- 22. Kodama, S. & Sekiguchi, H. (2006). Estimation of point of zero charge for activated carbon treated with atmospheric pressure nonthermal oxygen plasmas, Thin Solid Films, 506-507, pp. 327-330. DOI.10.1016/j.tsf.2005.08.137.
- 23. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24, pp. 1-39.
- 24. Langmuir, I. (1916). The constitutional and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, pp. 2221-2295.
- 25. Leboda, R., Charmas, B., Skubiszewska-Zięba, J. & Chodorowski, S. (2005). Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane, Journal of Colloid and Interface Science, 284, pp. 39-47. DOI.10.1016/j.jcis.2004.09.052.
- 26. Lim, C.K., Bay, H.H., Neoh, C.H., Aris, A., Majid, Z.A. & Ibrahim, Z. (2013). Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environmental Science and Pollution Research, 20, pp. 7243-7255. DOI.10.1007/s11356-013-1725-7.
- 27. Liu, Y., Liu, X., Lu, S., Zhao, B., Wang, Z., Xi, B. & Guo, W. (2020). Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential, Chemical Engineering Journal, 384, 123346.
- 28. Lu, Z.-Y., Ma, Y. L., Zhang, J.-T., Fan, N.-S., Huang, B.-Ch. & Jin, R.-C. (2020). A critical review of antibiotic removal strategies: Performance and mechanisms, Journal of Water Process Engineering, 38, p. 101681. DOI.101681.10.1016/j.jwpe.2020.101681.
- 29. Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang ,P., Li, J., Tsang, D.C.W., Bolan, N.S., Rinklebe, J. & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH modified biochar under single and ternary systems, Bioresource Technology, 263, pp. 385-392. DOI.10.1016/j.biortech.2018.05.022.
- 30. Ma, Y., Yang, L., Wu, L., Li, P., Qi, X., He, L., Cui, S., Ding, Y. & Zhang, Z. (2020). Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal, Science of The Total Environment, 718, p. 137299. DOI.10.1016/j.scitotenv.2020.137299
- 31. Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B. & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives, Journal of Environmental Chemical Engineering, 9, p. 105966. DOI.10.1016/j.jece.2021.105966.
- 32. Prasannamedha, G. & Senthil, K.P. (2019). A review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution using Cleaner Techniques: Present and Future Perspective, Journal of Cleaner Production, 250(5), p. 119553. DOI.10.1016/j.jclepro.2019.119553.
- 33. Qalyoubi, L., Al-Othman, A., Al-Asheh, S., Shirvanimoghaddam, K., Mahmoodi, R. & Naebe, M. (2024). Textile-based biochar for the removal of ciprofloxacin antibiotics from water, Emergent Materials, 7, pp. 577-588. DOI.10.1007/s42247-023-00512-0.
- 34. Sagaseta de Ilurdoz, M., Jaime Sadhwani, J. & Vaswani Reboso, J. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review, Journal of Water Process Engineering, 45, p. 102474. DOI.10.1016/j.jwpe.2021.102474.
- 35. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, pp. 603-619. DOI.10.1351/pac198254112201.
- 36. Skubiszewska-Zięba, J., Charmas, B., Leboda, R. & Gun’ko, V.M. (2012). Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits, Microporous and Mesoporous Materials, 156, pp. 209-216. DOI.10.1016/j.micromeso.2012.02.038.
- 37. Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, p. 5647. DOI.10.3390/ma13245647.
- 38. Szczepanik, B., Frydel, L., Słomkiewicz, P. M., Banaś, D., Stabrawa, I. & Kubala-Kukuś, A. (2023). Adsorptive removal of chloroxylenol and chlorophene from aqueous solutions using carbon-halloysite nanocomposites obtained from corrugated cardboard as a carbon precursor, Desalination and Water Treatment, 288, pp. 93-103. DOI.10.5004/dwt.2023.29212.
- 39. Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P., Kołbus, A., Styszko, K. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials, 12, p. 3754. DOI.10.3390/ma12223754.
- 40. Tan, X., Wei, H., Zhou, Y., Zhang, Ch. & Ho, S.-H. (2022). Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from different growth stage of microalgae, Environmental Research, 210, p. 112965. DOI.10.1016/j.envres.2022.112965.
- 41. Tang, L., Yu, J., Pang, Y., Zeng,, G., Deng Y., Wang, J., Ren, X., Ye,, S., Peng B. & Feng, H. (2018). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chemical Engineering Journal, 336, pp. 160-169. DOI.10.1016/j.cej.2017.11.048.
- 42. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst, Acta USSR 12, 3, pp. 27-356.
- 43. Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloids and Surfaces, 177, pp. 23-45. DOI.10.1016/S0927-7757(00)00594-X.
- 44. Wang, J. & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview, Total Environment, 701, p. 135023. DOI.10.1016/j.scitotenv.2019.135023.
- 45. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon solution, Journal of the Sanitary Engineering Division Am. Soc. Civ. Eng, 89, pp. 31-59.
- 46. Wu, X., Gao, P., Zhang, X., Jin, G., Xu, Y. & Wu, Y. (2014). Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite, Applied Clay Science, 95, pp. 60-66. DOI.10.1016/j.clay.2014.03.010.
- 47. Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes, Applied Clay Science, 119, pp. 284-293. DOI.10.1016/j.clay.2015.10.029.
- 48. Wu, X., Xu, Y., Zhang, X., Wu, Y. & Gao, P. (2015). Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite, New Carbon Materials, 30, pp.71-78. DOI.10.1016/S1872-5805(24)60878-4.
- 49. Wu, X., Zhu, W., Zhang, X., Chen, T. & Frost, R.L. (2011). Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol, Applied Clay Science, 52, pp. 400-406. DOI.10.1016/j.clay.2011.04.011.
- 50. Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L. & Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors, Journal of Environmental Management, 237, pp. 128-138. DOI.10.1016/j.jenvman.2019.02.068.
- 51. Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012). Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays and Clay Minerals, 60(6), pp. 561-573. DOI.10.1346/CCMN.2012.0600602.
- 52. Zhang, Ch., Wang, L., Gao, X. & He, X. (2016). Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42, pp. 48-57. DOI.10.1515/aep-2016-0036.
- 53. Zhao, J., Han, Y., Liu, J., Li, B., Li, J., Li, W., Shi, P., Pan, Y., & Li, A. (2024). Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China, Science of The Total Environment, 939, p. 173610. DOI. 10.1016/j.scitotenv.2024.173610.
- 54. Zhao, J. (2023). Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption, Process Safety and Environmental Protection, 171, pp. 238-249. DOI.10.1016/j.psep.2023.01.024.
- 55. Zhao, T., Ali, A., Su, J., Liu, S., Yan, H. & Xu, L. (2024). Removal of sulfamethoxazole from water by biosurfactant-modified sludge biochar: Properties and mechanism, Journal of Environmental Chemical Engineering, 12, p.114200. DOI.10.1016/j.jece.2024.114200.
- 56. Zhao, Z. & Zhou, W. (2019). Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole, Environmental Pollution, 245, pp. 208-217. DOI: 10.1016/j.envpol.2018.11.013
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb7cc9ce-2dea-4a30-8e99-25999facdbe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.