Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area – the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers’ behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver’s foraging.
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- University of Agriculture in Krakow Faculty of Forestry, Institute of Forest Resources Management Department of Forest Management, Geomatics and Forest Economics Al. 29 listopada 46, 31-425 Krakow, Poland
autor
- University of Agriculture in Krakow Faculty of Forestry, Institute of Forest Resources Management Department of Forest Management, Geomatics and Forest Economics Al. 29 listopada 46, 31-425 Krakow, Poland
Bibliografia
- [1] Będkowski, K. (2010). Numeryczny Model Terenu (NMT). W Geomatyka w Lasach Państwowych (pp. 199–212). Warszawa.
- [2] Calka, B., Bielecka, E. and Zdunkiewicz, K. (2016). Redistribution population data across a regular spatial grid according to buildings characteristics, Geodesy and Cartography, 65(2), 149–162, DOI:10.1515/geocart-2016-0011.
- [3] Czech, A. (2007). Bóbr europejski (Castor fiber). Opracowanie planów renaturalizacji siedlisk przyrodniczych i siedlisk gatunków na obszarach Natura 2000 oraz planów zarządzania dla wybranych gatunków objętych Dyrektywą Ptasią i Dyrektywą Siedliskową. Kraków.
- [4] Danilov, P.I. and Fyodorov, F.V. (2015). Comparative characterization of the building activity of Canadian and European beavers in northern European Russia. Russian Journal of Ecology, 46(3), 272–278, DOI:10.1134/S1067413615030029.
- [5] Dębski, M. (2004). ArcGIS 9. Podstawy ArcGis.
- [6] Drzewiecki, W., Wężyk, P., Pierzchalski, M. and Szafrańska, B. (2014). Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure Applied Geophysics, 171(6), 867–895, DOI: 10.1007/s00024-013-0669-7.
- [7] Gaździcki, J. (2010). Leksykon. http://www.ptip.org.pl.
- [8] Kogut, T., Niemeyer, J. and Bujakiewicz, A. (2016). Neural networks for the generation of sea bed models using airborne lidar bathymetry data. Geodesy and Cartography, 65(1), 41–54, DOI: https://doi.org/10.1515/geocart-2016-0007.
- [9] Miler, A. (2008). Las i woda – wybrane zagadnienia. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, Nr 2 (18).
- [10] Macfarlane, W.W, Wheaton, J. M., Bouwes N., Jensen M. J. and Shivi J.A. (2017). Modeling the capacity of riverscapes to support beaver dams. Geomorphology, 277, pp. 72–99, DOI: http://dx.doi.org/10.1016/j.geomorph.2015.11.019.
- [11] Nyssen, J., Pontzeele, J. and Billi, P. (2011). Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. Journal of Hydrology, 402(1-2), 92–102, DOI: 10.1016/j.jhydrol.2011.03.008.
- [12] PAP (2013). GUS: W Polsce wzrasta liczba zwierząt chronionych.
- [13] http://www.naukawpolsce.pap.pl/aktualnosci/news,395024,gus-w-polsce-wzrasta-liczba-zwierzatchronionych.html.
- [14] Szostak, M., Wężyk, P. and Tompalski, P. (2014). Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 171(6), 857–866, DOI: 10.1007/s00024-013-0668-8.
- [15] Puttock, A., Graham, H.A, Cunliffe, A.M., Elliot, M. and Brazier, R.E. (2017). Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Science of The Total Environment, 576, 430–443, DOI: 10.1016/j.scitotenv.2016.10.122.
- [16] Urbański, J. (2008). GIS w badaniach przyrodniczych. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.
- [17] Wężyk, P. (2014). Wykorzystanie danych ALS w modelowaniu zagrożenia pożarowego lasów. W: Wężyk P. (Ed.) Podręcznik dla uczestników szkoleń z wykorzystania produktów LiDAR. Warszawa, s. 241–244, ISBN: 978-83-254-2090-1.
- [18] Wężyk, P. and Pierzchalski, M. (2014). Modelowanie erozji wodnej gleb z zastosowaniem NMT generowanego z chmury punktów ALS. W: Wężyk P. (Ed.) Podręcznik dla uczestników szkoleń z wykorzystania produktów LiDAR. Warszawa, s. 178–182, ISBN: 978-83-254-2090-1.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb79ed0e-f025-43b5-aceb-fd8b643d00d4