Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the gradual increase of microplastics in water bodies, it is essential to understand the current treatment processes for their removal. This study aims to investigate the removal of microplastics in synthetic solution by electrocoagulation (EC). The effects of electrode type, contact time (min), agitation speed (rpm) and current density (A/m²) were evaluated using a fractional factorial design. The results showed that the aluminum anode achieved a higher removal of microplastics than the iron anode, reaching 98.04% removal with the aluminum operational configuration within 15 min at 70 rpm and a current density of 20 A/m². A high correlation between the predicted and observed removal was evidenced, with values of R²= 0.99 and adjusted R²= 0.98, indicating a good agreement between the model and the experimental data, confirming the validity and feasibility of the adopted linear model. This study demonstrates that the electrocoagulation process has a great potential for the removal of microplastics.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
64–--71
Opis fizyczny
Bibliogr. 28 poz., fot., rys., tab., wykr.
Twórcy
autor
- Universidad Nacional de Ingeniería, Lima, Peru
- Universidad Nacional del Callao, Peru
autor
- Universidad Nacional del Callao, Peru
autor
- Universidad de Huánuco, Peru
autor
- Universidad de Huánuco, Peru
autor
- Universidad de Huánuco, Peru
Bibliografia
- 1. Akarsu; C., Kumbur; H. & Kideys, A.E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science & Technology, 84, 7, pp. 1648-1662. DOI:10.2166/wst.2021.356
- 2. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 8, pp. 1596-1605.DOI:10.1016/j.marpolbul.2011.05.030
- 3. Antunes, J.C., Frias, J.G.L., Micaelo, A.C. Sobral, P. (2013). Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuarine, Coastal and Shelf Science, 130, pp. 62-69. DOI:10.1016/j.ecss.2013.06.016
- 4. Bannick, C.G., Szewczyk, R., Ricking, M., Schniegler, S., Obermaier, N., Barthel, A.K., Altmann, K., Eisentraut, P. & Braun, U. (2019). Development and testing of a fractionated filtration for sampling of microplastics in water. Water Research, 149, pp. 650-658. DOI:10.1016/j.watres.2018.10.045
- 5. Barnes, K.A., Galgani, F., Thompson, R.C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci., 364, 1526, pp. 1985-1998. https://doi.org/10.1098/rstb.2008.0205
- 6. Bhatt, P., Pathak, V.M., Bagheri, A.R. & Bilal, M. (2021). Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environmental Research, 200, 111762. https://doi.org/10.1016/j.envres.2021.111762
- 7. Cózar, A., Echevarría,F., González-Gordillo, J.I. & Duarte, C.M. (2014). Plastic debris in the open ocean. Proc. Natl. Acad. Sci., 111, 28, pp. 10239-10244. https://doi.org/10.1073/pnas.1314705111
- 8. Dong, C-D., Chen, C-W., Chen, Y.C., Chen, H-H., Lee, J-S. & Lin, C-H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385, pp. 121575. https://doi.org/10.1016/j.jhazmat.2019.121575
- 9. Ebrahimbabaie, P., Yousefi, K. & Pichtel, J. (2022). Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Science of The Total Environment, 806, pp. 150603. https://doi.org/10.1016/j.scitotenv.2021.150603
- 10. Elkhatib, D., Oyanedel-Craver, V. & Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276, 118877. https://doi.org/10.1016/j.seppur.2021.118877
- 11. Fu, J., Zhao, Y. & Qiuli Wu, Q. (2007). Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. Journal of Hazardous Materials, 144, 1-2, pp. 499-505. https://doi.org/10.1016/j.jhazmat.2006.10.071
- 12. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. & Rochman, C.M. (2019). Magnetic Extraction of Microplastics from Environmental Samples. Environmental Science & Technology Letters, 6, 2, pp. 68-72. https://doi.org/10.1021/acs.estlett.8b00671
- 13. Gutiérrez, H. & Salazar, V., (2012). Análisis y diseño de experimentos, McGraw Hill, México 2012
- 14. Holt, P.K., Barton, G.W. & Mitchell, C.A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59, 3, pp. 355-367. https://doi.org/10.1016/j.chemosphere.2004.10.023
- 15. Hu, Y., Zhou, L., Zhu, J. & Gao, J. (2023). Efficient removal of polyamide particles from wastewater by electrocoagulation. Journal of Water Process Engineering, 51, pp. 103417. https://doi.org/10.1016/j.jwpe.2022.103417
- 16. Huang, H., Sun, Z., Liu, S., Di, Y., Xu, J., Liu, C., Xu, R., Song, H., Zhan, S. & Wu, J. (2021). Underwater hyperspectral imaging for in situ underwater microplastic detection. Science of The Total Environment, 776, 145960. https://doi.org/10.1016/j.scitotenv.2021.145960
- 17. Khandegar, V. & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, pp. 949-963. https://doi.org/10.1016/j.jenvman.2013.06.043
- 18. Kim, K. T. & Park, S. (2021). Enhancing Microplastics Removal from Wastewater Using Electro-Coagulation and Granule-Activated Carbon with Thermal Regeneration. Processes, 9, 4, pp. 2 - 15. https://doi.org/10.3390/pr9040617
- 19. Lambert, S. & Wagner M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, pp. 265-268. DOI:10.1016/j.chemosphere.2015.11.078
- 20. Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Vallejo, J.J.G. & Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, pp. 107199. https://doi.org/10.1016/j.envint.2022.107199
- 21. Liu, X., Yuan, W., Di, M., Li, Z. & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, pp. 176-182. DOI:10.1016/j.cej.2019.01.033
- 22. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J. & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, pp. 159-167. DOI:10.1016/j.cej.2018.11.155
- 23. Malankowska, M., Echaide-Gorrizab, C. & Coronas, J. (2021). Microplastics in marine environment: a review on sources, classification, and potential remediation by membrane technology. Environmental Science: Water Research & Technology, 7, 2, pp. 243-258. DOI:10.1039/D0EW00802H
- 24. Perren, W., Wojtasik, D. & Cai, Q. (2018). Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3, 3, pp. 3357-3364. DPOI:10.1021/acsomega.7b02037
- 25. Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z. & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428, pp. 131161, DOI:10.1016/j.cej.2021.131161
- 26. Slootmaekers, B., Carteny, C.C., Belpaire, C., Saverwyns, S., Fremout, W., Blust, R. & Bervoets, L. (2019). Microplastic contamination in gudgeons (Gobio gobio) from Flemish rivers (Belgium). Environmental Pollution, 244, pp. 675-684. DOI:10.1016/j.envpol.2018.09.136
- 27. Xu, R., Yang, Z., Niu, Y., Xu, D., Wang, J., Han, J. & Wang, H. (2022). Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Separation and Purification Technology, 290, pp. 120905. DOI:10.1016/j.seppur.2022.120905
- 28. Zailani, L. W. M. & Zin, N. S. M., (2018). Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review. IOP Conference Series: Earth and Environmental Science, 140, 012052. https://iopscience.iop.org/article/10.1088/1755-1315/140/1/012052/meta
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb78ef2e-4f30-4780-8153-bdabaabe08c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.