PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of the parallel and angular electrical gripper for industrial applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study the position and power performances of an electrical lead screw-driven industrial gripper mechanism (LSDIGM). This work consists of designing and developing an electrical LSDIGM that has the potential to meet various demands in the automation industry and factories. The performances of both angular electrical gripper (AEG) and parallel electrical gripper (PEG) mechanisms were compared based on their position and power efficiency. The position efficiency of these electrical LSDIGM is computed from the position root mean square error (PRMSE) obtained from errors between the two measured positions (input incremental encoder and output linear encoder). In the experimental setup, a current sensor and a spring were employed to measure the current in the input of the system and the stiffness in the output of the system, respectively. The electrical power in the input of the electrical LSDIGM and the mechanical power in the output of the LSDIGMs were calculated using the current and the spring force, respectively. Finally, the power efficiency of these electrical LSDIGMs was examined and compared at different velocity circumstances.
Rocznik
Strony
66--73
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Research and Development, Keramik Makina Sanayi ve Ticaret A.S, Güzeller Organize Sanayi Bölgesi İnönü Mah. Nursultan Nazarbayev Sok. No:21 41400 Gebze, Kocaeli, Turkey
autor
  • Automation and Robotics Lab, Department of Mechatronics Engineering, Kocaeli University, Kabaoğlu, Baki Komsuoğlu bulvarı No:515, Umuttepe, 41001 İzmit/Kocaeli, Turkey
Bibliografia
  • 1. Birglen L., Schlicht, T. (2018), A statistical review of industrial robotic grippers. , Robotics and Computer-Integrated Manufacturing, 49, 88-97.
  • 2. Chen Z., Xu J., Yu L., Xiong Y., Zhu H. (2014, May), Design and implementation of the electric gripper control system based on the DSP. In The 26th Chinese Control and Decision Conference (2014 CCDC), (pp. 3513-3517, ). IEEE.
  • 3. Datta R., Pradhan S., Bhattacharya B. (2015), Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm. , IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(1), 16-26.
  • 4. Fotuhi M. J., Bingul Z. (2021), Fuzzy torque trajectory control of a rotary series elastic actuator with nonlinear friction compensation. , ISA transactions.
  • 5. Fotuhi M. J., & Bingul Z. (2021), Novel fractional hybrid impedance control of series elastic muscle-tendon actuator. , Industrial Robot: the international journal of robotics research and application.
  • 6. Fotuhi M. J., Yılmaz O., Bingul Z. (2020), Human postural ankle torque control model during standing posture with a series elastic muscle-tendon actuator. , SN Applied Sciences, 2(2), 1-8.
  • 7. Hassan A., Abomoharam M. (2017), Modeling and design optimization of a robot gripper mechanism. , Robotics and ComputerIntegrated Manufacturing, 46, 94-103.
  • 8. Heilala J., Ropponen T., & Airila M. (1992), Mechatronic design for industrial grippers. , Mechatronics, 2(3), 239-255.
  • 9. Honarpardaz M., Tarkian M., Ölvander J., Feng X. (2017), Finger design automation for industrial robot grippers: A review. , Robotics and Autonomous Systems, 87, 104-119.
  • 10. Hu Z., Wan W., Harada K. (2019), Designing a mechanical tool for robots with two-finger parallel grippers. , IEEE Robotics and Automation Letters, 4(3), 2981-2988.
  • 11. Kuang L., Lou Y., Song S. (2017), Design and fabrication of a novel force sensor for robot grippers. , IEEE Sensors Journal, 18(4), 1410-1418.
  • 12. Kumar R., Mehta U., Chand P. (2017), A low cost linear force feedback control system for a two-fingered parallel configuration gripper. , Procedia computer science, 105, 264-269.
  • 13. Li Q. M., Qin Q. H., Zhang S. W., Deng H. (2011), Optimal design for heavy forging robot grippers. , In Applied Mechanics and Materials (Vol. , 44, pp. 743-747). , Trans Tech Publications Ltd.
  • 14. Li X., Chen W., Lin W., Low K. H. (2017), A variable stiffness robotic gripper based on structure-controlled principle. , IEEE Transactions on Automation Science and Engineering, 15(3), 1104- 1113.
  • 15. Liu C. H., Chung F. M., Chen Y., Chiu C. H., Chen T. L. (2020), Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper. , IEEE/ASME Transactions on Mechatronics, 25(4), 1830- 1840.
  • 16. Liu Y., Zhang Y., Xu Q. (2016), Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams. , IEEE/ASME Transactions on Mechatronics, 22(1), 476-486.
  • 17. Lu, Y., Xie , Z., Wang, J., Yue, H., Wu, M., & Liu, Y. (2019), A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. , International Journal of Mechanical Sciences, 159, 74-80.
  • 18. Najjari B., Barakati S. M., Mohammadi A., Futohi M. J., Bostanian M. (2014), Position control of an electro-pneumatic system based on PWM technique and FLC. , ISA transactions, 53(2), 647-657.
  • 19. Nanda A. P. (2010), Design & Development of a Two-jaw parallel Pneumatic Gripper for Robotic Manipulation (Doctoral dissertation).
  • 20. Park T. M., Won S. Y., Lee S. R., Sziebig G. (2016, June), Force feedback based gripper control on a robotic arm. In, 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES), (pp. 107-112, ). IEEE.
  • 21. Pham D. T., Yeo S. H. (1991), Strategies for gripper design and selection in robotic assembly. , The International Journal of Production Research, 29(2), 303-316.
  • 22. Shaw J. S., Dubey V. (2016, August), Design of servo actuated robotic gripper using force control for range of objects. , In 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS) (pp. 1-6). ), IEEE.
  • 23. Shin D. H., Park T. S., Jeong C. P., Kim Y. G., An J. N. (2012), Study of torsion spring’s parameters with angular type grippers. , In Advanced Materials Research (Vol. , 502, pp. 355-359). .Trans Tech Publications Ltd.
  • 24. Su K. H., Zhong Y. H. (2018, July), Design of Handling Gripper and its Application to Smart Pet Robot. , In 2018 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol. , 1, pp. 105-108). IEEE.
  • 25. Tai K., El-Sayed A. R., Shahriari M., Biglarbegian M., Mahmud S. (2016), State of the art robotic grippers and applications. , Robotics, 5(2), 11.
  • 26. Varanasi K. K., & Nayfeh S. A. (2004), The dynamics of lead-screw drives: low-order modeling and experiments. , J. Dyn. Sys., Meas., Control, 126(2), 388-396.
  • 27. Wang X., Xiao Y., Fan X., & Zhao Y. (2016, May), Design and grip force control of dual-motor drive electric gripper with parallel fingers. , In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, (pp. 696-700, ). IEEE.
  • 28. Xu F., Wang B., Shen J., Hu J., Jiang G. (2018), Design and realization of the claw gripper system of a climbing robot. , Journal of Intelligent & Robotic Systems, 89(3), 301-317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb76ed34-a8e4-4691-937e-6e374ddd33a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.