PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low concentration magnetic nanoparticle and localized magnetic centers in different materials: studies by FMR/EPR method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this review is recapitulating the temperature dependence of FMR/EPR spectra of low concentration of magnetic nanoparticles and ultralow concentration localized magnetic centers (defects, free radicals, the lower oxidation state of titanium ions) in different materials. Design/methodology/approach: Reorientation processes correlated and isolated spin systems during changing temperature could inform about physical properties of the materials. The FMR/EPR is very usefully method for characterization novel materials as polymers/copolymers, nanotubes, TiN, TiC, Ti-Si-C-N, TiO2, Me-Fe-V-O, nFe2O3/(1-n)ZnO or an extended free radicals networks. Findings: The intense almost symmetrical FMR resonance line of low concentration of magnetic nanoparticles are observed which essential are changed at different temperatures. The EPR spectra of low concentration localized magnetic nanoparticles is shown that the relaxation processes are different than for magnetic nanoparticles embed in polymer matrixes. A very low concentration of magnetic nanoparticles and localized magnetic moments could modify its physical properties (magnetic, conductivity or mechanical). Research limitations/implications: Composite systems containing magnetic nanoparticles and localized magnetic moments promise the potential for high-density data storage, biomedical applications, catalysis, building materials, photovoltaic, metallurgy and nanotechnology sensor materialisation, among other envisaged utilisations. Originality/value: Continue attempting to decipher the mystery and fruitfulness of magnetic nanoparticle and localized magnetic nanoparticles distributions.
Rocznik
Strony
25--38
Opis fizyczny
Bibliogr. 161 poz., rys.
Twórcy
autor
  • Deparment of Solid State, Faculty of Physics, University of Athens, Panepistimiopolis, 15 784 Zografou, Athens, Greece
  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronic, Al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • [1] D.E. Speliotis, Magnetic recording beyond the first 100 Years, Journal of Magnetism and Magnetic Materials 193 (1999) 29-35.
  • [2] E. Troc, A. Ezzir, R. Cherkaoui, C. Chaneac, M. Nogues, H. Kachkachi, D. Fiorani, A.M. Testa, J.M. Greneche, J.P. Jolivet, Surface-related properties of y-Fe2O3 nanoparticles, Journal of Magnetism and Magnetic Materials 221 (2000) 63-79.
  • [3] Yu.A. Koksharov, S.P. Gubin, I.D. Kosobudsky, G.Yu. Yurkov, D.A. Pankratov, L.A. Ponomarenko, M.G. Mikheev, M. Beltran, Y. Khodorkovsky, A.M. Tishin, Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles, Physical Review B 63 (2001) 012407.
  • [4] Yu.A. Koksharov, D.A. Pankratov, S.P. Gubin, I.D. Kosobudsky, M. Beltran, Y. Khodorkovsky, A.M. Tishin, Electron paramagnetic resonance of ferrite nanoparticles, Journal of Applied Physics 89 (2001) 2293-2298.
  • [5] X. Chen, W. Kleemann, O. Petracic, O. Sichelschmidt, S. Cardoso, P.P. Freitas, Relaxation and aging of a superferromagnetic domain state, Physical Review B 68 (2003) 054433-1-5.
  • [6] [5] Y. Xiaotun, X. Lingge, N.S. Choon, C.S.O. Hardy, Magnetic and electrical properties of polypyrrole-coated y-Fe2O3 nanocomposite particles, Nanotechnology 14 (2003) 624-629.
  • [7] J.L. Wilson, P. Poddar, N.A. Frey, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles, Journal of Applied Physics 95 (2003) 1439-1443.
  • [8] C.T. Hsieh, J.T. Lue, Electron spin resonance studies on quantum tunneling in sinel ferrite nanoparticles, Europen Physica Journal B35 (2003) 357-364.
  • [9] N. Guskos, E.A. Anagnostakis, V. Likodimos, J.Typek, M. Maryniak, U. Narkiewicz, Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 Journal of Applied Physics 97 (2005) 0204304.
  • [10] N. Guskos, V. Likodimos, S. Glenis, J. Typek, M. Maryniak, Z. Roslaniec, M. Baran, R. Szymczak, D. Petridis, M. Kwiatkowska, Matrix freezing effect on the magnetic properties of y-Fe2O3 nanoparticles dispersed in multiblock copolymer, Journal of Applied Physics 99 (2006) 084307.
  • [11] P. Dutta, A. Manivannan, M.S. Sechra, N. Shah, G.P. Huffman, Magnetic properties of nearly defect-free maghemite nanocrystals, Physical Review B 70 (2004) 174428.
  • [12] N. Guskos, E.A. Anagnostakis, A. Guskos, FMR study of magnetic nanoparticles embedded in non-magnetic matrix, Journal of Achievementes in Materials and Manufacturing Engineering 24/1 (2007) 26-35.
  • [13] N. Guskos, V. Likodimos, S. Glenis, M. Maryniak, M. Baran, R. Szymczak, Z. Roslaniec, M. Kwiatkowska, D. Petridis, Magnetic properties of y-Fe2O3/poly(esther-ester) copolymer nanocomposites, Journal of Nanoscience and Nanotechnology 8 (2008) 2127-2134.
  • [14] N. Guskos, M. Maryniak, J. Typek, P. Podsiadly, U. Narkiewicz, E. Senderek, Z. Rosłaniec, Carbon covered magnetic nickel nanoparticles embedded in PBT-PTMO polymer: preparation and magnetic properties, Journal of Non-crystalline Solids 355 (2009) 1400-1404.
  • [15] M.R. Dudek, N. Guskos, E. Senderek, Z. Roslaniec, Temperature dependence of the FMR absorption lines in viscoelastic magnetic materials, Journal of Alloys and Compounds 504/2 (2010) 289-295.
  • [16] N. Guskos, J. Typek, G. Zolnierkiewicz, K. Wardal, D. Sibera, U. Narkiewicz, Magnetic resonance study of nanocrystalline ZnO nanopawders doped with Fe2O3 obtained by hydrothermal synthesis, Reviews on Advanced Materials Science 29 (2011) 142-149.
  • [17] M.R. Dudek, N. Guskos, M. Kosmider, Thermal effects on the ferromagnetic resonance in polymer composites with magnetic nanoparticles fillers in nanoparticles, Smart nanoparticles technology, A.A. Hashim (Ed.), InTech, Rijeka, 2012, 373-386.
  • [18] J. Majszczyk, N. Guskos, J. Typek, M. Maryniak, Z. Roslaniec, M. Kwiatkowska, D. Petridis, Low concentration of magnetic nanoparticle (y-Fe2O3) effect on the interfacial polarization (MWS) and glass transition in poly(ether-b-ester) copolymer, Journal of Non-crystalline Solids 352/40-41 (2006) 4279-4282.
  • [19] M. Maryniak, N. Guskos, J. Typek, A. Guskos, K. Goracy, Z. Roslaniec, M. Kwiatkowska, DSC and TGA measurements at high temperatures of polymer composites with nanocrystalline y-Fe2O3, Polimers 54 2009) 546.
  • [20] N. Guskos, J. Typek, B.V. Padlyak, Yu.K. Gorelenko, I. Pelech, U. Narkiewicz, E. Senderek, A. Guskos, Z. Roslaniec, In situ synthesis, morphology and magnetic properties poly(ether-ester) multiblock copolymer/carbon-covered nickel nanosystem, Journal of Non-Crystalline Solids 356/37-40 (2010) 1893-1901.
  • [21] V. Likodimos, N. Guskos, S. Glenis, R. Szymczak, A. Bezkrovnyj, M. Wabia, J. Typek, M. Kurzawa, I. Rychlowska-Himmel, A. Blonska-Tabero, Magnetic properties of the antiferromagnetic site-disordered vanadate Zn2FeV3O11, Europen Physica Journal B 38 (2004) 13-19.
  • [22] H. Fuks, M. Wabia, J. Typek, A. Worsztynowicz, N. Guskos, M. Kurzawa, M. Bosacka, R. Szymczak, M. Baran, I. Rychlowska-Himmel, Temperature evolution of the EPR spectra in Mg2CrV3O11-x compound, Molecular Physics Reports 39 (2004) 43-49.
  • [23] N. Guskos, J. Typek, G. Zolnierkiewicz, A. Blonska-Tabero, M. Kurzawa, M. Bosacka, Magnetic resonance study of M3Fe4V6O24 (M=Mg, Zn, Mn, Cu, Co) compound, Materials Science-Poland 23/4 (2005) 923-928.
  • [24] G. Zolnierkiewicz, N. Guskos, J. Typek, A. Blonska-Tabero, Competing magnetic interactions in Zn3Fe4V6O24 studied by electron paramagnetic resonance, Acta Physica Polonica A 109/4-5 (2006) 675-679.
  • [25] N. Guskos, V. Likodimos, J. Typek, G. Zolnierkiewicz, R. Szymczak, A. Blonska-Tabero, Magnetic properties of the Mg2FeV3O11-x site-disorfered vanadate, Journal of Non-Crystalline Solids 352/40-41 (2006) 4179-1482.
  • [26] G. Zolnierkiewicz, N. Guskos, J. Typek, A. Blonska-Tabero, EPR and TGA study of two Zn3Fe4V6O24-x samples prepared by different thermal treatments, Journal of Non-Crystalline Solids 352/40-41 (2006) 4362-4365.
  • [27] N. Guskos, J. Typek, G. Zolnierkiewicz, A. Blonska-Tabero, M. Kurzawa, S. Los, W. Kempinski, Interaction thermal annealing processes on the spectroscopic properties of Ni2FeV3Ou.5 compound, Materials Science-Poland 24 (2006) 985.
  • [28] N. Guskos, V. Likodimos, S. Glenis, G. Zolnierkiewicz, J. Typek, R. Szymczak, A. Blonska-Tabero, Magnetic frustration in the site ordered Mg3Fe4(VO6)4 vanadate, Journal of Applied Physics 101 (2007) 103922.
  • [29] G. Zolnierkiewicz, N. Guskos, J. Typek, E.A. Anagnostakis, A. Blonska-Tabero, M. Bosacka, Competition of magnetic interactions in M3Fe4V6O24(M(II)=Zn, Cu, Mn, Mg) compounds studies by EPR at high temperatures, Journal of Alloys and Compounds 471/1-2 (2009) 28-32.
  • [30] N. Guskos, H. Ohta, G. Zolnierkiewicz, S. Okubo, Wei-min Zhang, J. Typek, C. Rudowicz, R. Szymczak, M. Bosacka, T. Nakamura, Magnetic interactions in frustrated Mn3Fe4(VO4)6, Journal of Non-Crystalline Solids 355 (2009) 1419-1426.
  • [31] G. Zolnierkiewicz, N. Guskos, J. Typek, Magnetic frustration in M-Fe-V-O system, Current Topics in Biophysics A 33 (2010) 277-281.
  • [32] N. Guskos, G. Zolnierkiewicz, J. Typek, R. Szymczak, A. Blonska-Tabero, Study of magnetic inhomogeneity in b-Cu3Fe4V6O24, Materials Science-Poland 30/1 (2012) 1-9.
  • [33] N. Guskos, T. Bodziony, A. Biedunkiewicz, K. Aidinis, Temperature dependence of the EPR spectra of the nanocrystalline TiN and TiC dispersed in a carbon matrix, Acta Physica Polonica A 108/2 (2005) 311-316.
  • [34] T. Bodziony N. Guskos, A. Biedunkiewicz, J. Typek, R. Wrobel, M. Maryniak, Characterization and EPR studies of TiC and TiN ceramics at room temperature, Materials Science-Poland 23/4 (2005) 899-907.
  • [35] N. Guskos, V. Likodimos, S. Glenis, G. Zolnierkiewicz, J. Typek, C.L. Lin, A. Biedunkiewicz, Magnetic properties of TiCx/C nanocomposites, Journal of Non-Crystalline Solids 354/35-39 (2008) 4330-4333.
  • [36] N. Guskos, E.A. Anagnostakis, G. Zolnierkiewicz, V. Likodimos, J. Typek, A. Guskos, A. Biedunkiewicz, Magnetic agglomerates in the ternary nanomaterial system Ti-Si-C, Elektronika, 5 (2008) 18.
  • [37] N. Guskos, E.A. Anagnostakis, K.A. Karkas, A. Guskos, A. Biedunkiewicz, P. Figiel, Magnetic and transport properties of nanocrystalline titanium carbide in carbon matrix, Electron transport in nanosystems, NATO Science for Peace and Security Series B, Physics and Biophysics (2008) 315-327.
  • [38] N. Guskos, T. Bodziony, M. Maryniak, J. Typek, A. Biedunkiewicz, Paramagnetic centers in nanocrystalline TiC/C system, Journal of Alloys and Compounds 455/1 (2008) 52-54.
  • [39] N. Guskos, T. Bodziony, J. Typek, G. Zolnierkiewicz, M. Maryniak, A. Biedunkiewicz, Ageing effect in nanocrystalline TiC/C studied by EPR, Journal of Alloys and Compounds 470/1-2 (2009) 51-54.
  • [40] N. Guskos, E.A. Anagnostakis, G. Zolnierkiewicz, J. Typek, A. Biedunkiewicz, P. Figiel, A. Guskos, K.A. Karkas, EPR study of Ti-Si-C-N system, Reviews on Advanced Materials Science 23/2 (2010) 189-195.
  • [41] N. Guskos, E.A. Anagnostakis, G. Zolnierkiewicz, J. Typek, A. Biedunkiewicz, A. Guskos, P. Berczynski, Effect of annealing on EPR spectra of Ti-Si-C-N samples, Materials Science-Poland 30/1 (2012) 23-31.
  • [42] N. Guskos, G. Zolnierkiewicz, J. Typek, A. Guskos, D. Petridis, Extended free radical network derived from condensation of cyanuric chloride with p-Phenylenediamine: EPR/FMR study, Journal of Non-Crystalline Solids 354/35 (2008) 4211-4213.
  • [43] N. Guskos, G. Zolnierkiewicz, J. Typek, A. Guskos, D. Petridis, Influence of concentration of free radicals/magnetic agglomerates on magnetic resonance spectrum in organic matrix, Reviews on Advanced Materials Science 23/2 (2010) 164-168.
  • [44] N. Guskos, G. Zolnierkiewicz, J. Typek, A. Guskos, P. Berczynski, D. Petridis, Interaction between magnetic agglomerates and extended free radicals network studied by magnetic resonance, Central European Journal of Physics 10/1 (2012) 166-171.
  • [45] N. Guskos, A. Guskos, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, A. Morawski, Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2, Materials Science and Engineering B 177/2 (2012) 223-227.
  • [46] N. Guskos, A. Guskos, G. Zolnierkiwicz, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, B. Ohtani, A.W. Morawski, Spectroscopic and photocatalytic properties of N-modified TiO2 prepared by different annealing and water-rinsing processes, Materials Chemistry and Physics, 2012.
  • [47] V. Likodimos, S. Glenis, N. Guskos, C.L. Lin, Magnetic and electronic properties of multiwall carbon nanotubes, Physical Review B 68 (2003) 045417.
  • [48] S. Glenis, V. Likodimos, N. Guskos, C.L. Lin, Magnetic properties of multiwall carbon nanotubes, Journal of Magnetism and Magnetic Materials 272-276 (2004) 16601661.
  • [49] [47] V. Likodimos, S. Glenis, N. Guskos, C.L. Lin, Antiferromagnetic behavior in single-wall carbon nanotubes, Physical Review B 76 (2007) 075420.
  • [50] S. Glenis, V. Likodimos, N. Guskos, D. Yaramis, G. Zolnierkiewicz, A. Szymczyk, C.L. Lin, Magnetic properties of carbon nanotube poly(ether-ester) nanocomposites, Journal of Applied Physics 108/5 (2010) 054314.
  • [51] D. Sibera, U. Narkiewicz, N. Guskos, G. Zolnierkiewicz, The preparation and EPR study of nanocrystalline ZnFe2O4, Journal of Physics, Conference Series 146 (2009) 1-5.
  • [52] N. Guskos, G. Zolnierkiewicz, J. Typek, D. Sibera, U. Narkiewicz, Magnetic resonance study of ZnO-Fe2O3-ZnFe2O4 system, Reviews on Advanced Materials Science 23 (2010) 224-228.
  • [53] N. Guskos, S. Glenis, G. Zolnierkiewicz, J. Typek, D. Sibera, J. Kaszewski, D. Moszyński, W. Łojkowski, U. Narkiewicz, Ferromagnetic resonance in Fe2O3/ZnO nanocomposites, Physica B 405/18 (2010) 4054-4058.
  • [54] N. Guskos, S. Glenis, G. Zolnierkiewicz, J. Typek, D. Sibera, U. Narkiewicz, FMR Study of temperature dependence of magnetic properties of nanocrystalline 0.90(Fe203)/0.10Zn0, Acta Physica Polonica A 120/6 (2011) 1070-1073.
  • [55] N. Guskos, J. Typek, G. Zolnierkiewicz, K. Wardal, D. Sibera, U. Narkiewicz, Magnetic resonance study of nanocrystalline ZnO nanopawders doped with Fe2O3 obtained by hydrothermal synthesis, Reviews on Advanced Materials Science 29 (2011) 142-149.
  • [56] N. Guskos, S. Glenis, J. Typek, G. Zolnierkiewicz, P. Berczynski, K. Wardal, A. Guskos, D. Sibera, D. Moszynski, W. Lojkowski, U. Narkiewicz, Magnetic properties of ZnFe2O4 nanoparticles, Central European Journal of Physics 10 (2012) 470-477.
  • [57] N. Guskos, S. Glenis, G. Zolnierkiewicz, J. Typek, P. Berczynski, A. Guskos, D. Sibera, U. Narkiewicz, Magnetic properties of ZnFe2O4 ferrite nanoparticles embedded in ZnO Matrix, Applied Physics Letters 100/12 (2012) 122403.
  • [58] V.F. Puntes, K.M. Krishan, A.P. Alivisatos, Colloidal nanocrystal shape and size control, The case of cobalt, Science Magazine 291 (2001) 2115-2117.
  • [59] L.F. Yin, D.H. Wei, N. Lei, L.H. Zhou, C.S. Tian, G.S. Dong, X.F. Jin, L.P. Guo, Q.J. Jia, R.Q. Wu, Magnetocrystalline anisotropy in permalloy revisited, Physical Review Letters 97 (2006) 067203.
  • [60] L. He, W. Zheng, W. Zhou, H. Du, C. Chen, L. Guo, Size-dependent magnetic properties of nickel nanochains, Journal of Physics, Condensed Matter 19/3 (2007) 036216.
  • [61] F. Tian, J. Zhu, D. Wei, Phase transition and magnetism of Ni nanowire arrays, The Journal of Physical Chemistry C 111/19 (2007) 6994-6997.
  • [62] V. Srinivas, S.K. Barik, B. Bodo, D. Karmakar, T.V.C. Rao, Magnetic and electrical properties of oxygen stabilized nickel nanofibers prepared by the borohydride reduction method, Journal of Magnetism and Magnetic Materials 320/6 (2008) 788-795.
  • [63] P. Yu, X.F. Jin, J. Kudrnovsky, D.S. Wang, P. Bruno, Curie temperature of fcc and bcc nicle and permalloy, Supercell and Green’s function methods, Physical Review B 77 (2008) 054431.
  • [64] T. Nagao, Y. Kubo, A. Koizumi, H. Kobayashi, M. Itou, N. Sakai, Momentum-density distribution of magnetic electrons in ferromagnetic nickel, Journal of Physics: Condensed Matter 20/5 (2008) 055201.
  • [65] W.D. Harding, H.H. Kung, V.L. Kozhernik, K.R. Poeppelmeier, Phase equilibria and butane oxidation studies of the MgO-V2O5-MoO3 system, Journal of Catalysis 144 (1993) 597-610.
  • [66] M.A. Lafontaine, J.M. Greneche, Y. Laligant, G. Ferey, [beta]-Cu3Fe4(VO4)6: Structural study and relationships; physical properties, Journal of Solid State Chemistry 108/1 (1994) 1-10.
  • [67] S.A. Korili, S. Ruiz, B. Delmon, Oxidative dehydrogenation of n-pentane on magnesium vanadate catalysts, Catalysis Today 32/1 (1996) 229-235.
  • [68] X. Wang, D.A. Vander Griend, C.L. Stern, K.P. Poeppelmeir, Structure and cation distribution of new ternary vanadates FeMg2V3On and FeZn2V3On, Journal of Alloys and Compounds 298 (2000) 119-124.
  • [69] P. Rybarczyk, H. Berndt, J. Radnik, M.-M. Pohl, 0. Buyerskaya, M. Baerns, A. Bruckner, The structure of active sites in Me-V-O catalysts (Me = Mg, Zn, Pb) and its influence on the catalytic performance in the oxidative dehydrogenation (ODH) of propane, Journal of Catalysis 202/1 (2001) 45-58.
  • [70] L.E. Briand, J.-M. Jehng, L. Cornaglia, A.M. Hirt, I.E. Wachs, Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates, Catalysis Today 78/1 (2003) 257-268.
  • [71] N. Guskos, M. Wabia, M. Kurzawa, A. Bezkrovnyj, J. Typek, I. Rychlowska-Himmel, A. Blonska-Tabero, Neutron Diffraction Study of Mg2FeV3O11-δ, Compounds, Radiation Effects and Defects in Solids 158 (2003) 369-374.
  • [72] N. Guskos, J. Typek, F.A. Bezkrovnyj, V. Likodimos, M. Wabia, M. Kurzawa, E.A. Anagnostakis, G. Gasiorek, Neutron studies of cation disorder in Zn2FeV3O11-δ, Journal of Alloys and Compounds 377/1-2 (2004) 47-52.
  • [73] N. Guskos, A. Bezkrovnjj, J. Typek, N.Yu. Ryabova, A. Blonska-Tabero, M. Kurzawa, M. Maryniak, Neutron study of Zn3Fe4V6O24, Journal of Alloys and Compounds 391/1-2 (2005) 20-25.
  • [74] A. Beskrovnyy, N. Guskos, J. Typek, N.Yu. Ryabova, A. Blonska-Tabero, M. Kurzawa, G. Zolnierkiewicz, Crystal structure of Mg3Fe4V6O24 studies by neutron diffraction, Reviews on Advanced Materials Science 12 (2006) 166-171.
  • [75] P. Eklund, C. Virojanadara, J. Emmerlich, L.I. Johansson, H. Hogberg, L. Hultman, Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films, Physical Review B 74 (2006) 045417.
  • [76] H.O. Gulsoy, Mechanical properties of injection moulded 316L stainless steels with (TiC)N additions, Powder Metallurgy 50/3 (2007) 271-275.
  • [77] W.D. Leroy, C. Detavernier, R.L. van Meirhaeghe, C. Lavoiec, Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors, Journal of Applied Physics 101/5 (2007) 053714.
  • [78] J.M. Cordoba, M.J. Sayagues, M.D. Alcala, F.J.J. Gotor, Synthesis of Ti3SiC2 powders: Reaction mechanism, Journal- American Ceramic Society 90/3 (2007), 825-830.
  • [79] E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Y.K. Vekilov, M.I. Katsnelson MI, A.I. Lichtenstein, B. Johansson, Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, Journal of Applied Physics 101 (2007) 123519.
  • [80] D. Vallauri, I.C. Atias Cityplaceadrian, A. Chrysanthou, TiC-TiB2 composites: A review of phase relationships, processing and properties, Journal of the European Ceramic Society 28/8 (2008) 1697-1713.
  • [81] L.E. Toth, Transition metal carbide and nitrides, Academic Press, New York, 1971.
  • [82] A.A. Rempel, Atomic and vacancy ordering in nonstoichiometric carbides, Physics-Uspekhi 39 (1996) 31-56.
  • [83] J. Izquirdo, A. Vega, S. Bouarab, M.A. Khan, Optical conductivity in substoichiometric titanium carbides, Physcal Review B 58/7 (1998) 3507-3510.
  • [84] C. Acha, M. Monteverde, M. Nunez-Regueiro, Electrical resistivity of the Ti4O(7) Magneli phase under high pressure, The European Physical Journal B 34/4 (2003) 421-428.
  • [85] A.I. Gusev, S.Z. Nazarova, Magnetic susceptibility of nonstoichiometric compounds of transition d-metals, Uspekhi Fizicheskikh Nauk 175/7 (2005) 681-704.
  • [86] E.I. Isaev, R. Ahuja, S.I. Simak, A.I. Lichtenstein, Yu.Kh. Vekilov, B. Johansson, I.A. Abrikosov, Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides, Physical Review B 72/6 (2005) 064515.
  • [87] A.L. Ivanovskii, Magnetic effects induced by sp impurities and defects in nonmagnetic sp materials, Physics-Uspekhi 50/10 (2007) 1031.
  • [88] W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, A water-soluble and self-doped conducting polypyrrole graft copolymer, Macromolecules 38/4 (2005) 1044-1047.
  • [89] J.P. Majoral, A. M. Caminade, Dendrimers Containing heteroatoms (Si, P, B, Ge, or Bi), Chemical Reviews 99 (1999) 845-880.
  • [90] A.B. Bourlinos P. Dallas, Y. Sanakis, D. Stamopoulos, C. Trapalis, D. Niarchos, Synthesis and characterization of a pi-conjugate, covalent layered network derived from condensation polymerization of the 4,4 '-bipyridine-cyanuric chloride couple, European Polymer Journal 42/11 (2006) 2940-2948.
  • [91] G. Blotny, Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis, Tetrahedron 62/41 (2006) 9507-9522.
  • [92] M. Shahid, R.S. Ashraf, E. Klemm, S. Sensfuss, Synthesis and properties of novel low-band-gap thienopyrazine-based poly(heteroarylenevinylene)s, Macromolecules 39 (2006) 7844-7853.
  • [93] R.Y.C. Shin, T. Kietzke, S. Sudhakar, A. Dodabalapur, Z. K. Chen, A. Sellinger, N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in solar cells, Chemistry of Materials 19/8 (2007) 1892-1894.
  • [94] H.K.C. Pandya, Z.I. Niazimbetova, F.L. Beyer, M.E. Galvin, Role of symmetry and charge delocalization in two-dimensional conjugated molecules for optoelectronic applications, Chemistry of Materials 19/5 (2007) 993-1001.
  • [95] P. Dallas, A.B. Bourlinos, D. Petridis, N. Boukos, K. Papadokostaki, D. Niarchos, N. Guskos, Synthesis and characterization of 2-D and 3-D covalent networks derived from triazine central cores and bridging aromatic diamines, Polymer 49/5 (2008) 1137-1144.
  • [96] P. Dallas, D. Stamopoulos, N. Boukos, V. Tzitzios, D. Niarchos, D. Petridis, Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization, Polymer 48/11 (2007) 3162-3169.
  • [97] P. Dallas, D. Niarchos, D. Vrbanic, N. Boukos, S. Pejovnik, C. Trapalis, D. Petridis, Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites, Polymer 48/7 (2007) 2007-2013.
  • [98] A.B. Bourlinos, V. Georgakilas, V. Tzitzios, N. Boukos, R. Herrera, E.R. Giannelis, Functionalized carbon nanotubes: Synthesis of meltable and amphiphilic derivatives, Small 2/10 (2006) 1188-1191.
  • [99] A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A.R. GonzalezElipe, J.M. Herrmann, H. Tahiri, Y. AitIchou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel), Comparative studies of photocatalytic activity in water purification, Applied Catalysis B, Environmental 7/1 (1995) 49-63.
  • [100] K.D. Schierbaum, U.K. Kirner, J.F. Geiger, W. Gopel, Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B, Chemical 3/3 (1991) 205-214.
  • [101] A.L. Linsebigler, G. Lu, J.T. Yates, Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95 (1995) 735-758.
  • [102] D.B. Strukov, G.S. Sneider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature 453 (2008) 80-83.
  • [103] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Advanced Materials 21/25-26 (2009) 2632-2663.
  • [104] U. Stafford, K.A. Gray, P.V. Kamat, V. Arvind, An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface, Chemical Physics Letter 205 (1993) 55-61.
  • [105] G. Riegel, J.R. Bolton, Photocatalytic efficiency variability in TiO2 particles, The Journal of Physical Chemistry 99 (1995) 4215-4224.
  • [106] R.R. Bacsa, J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Applied Catalysis B, Environmental 16/1 (1998) 19-29.
  • [107] G. Colon, M.C. Hidalgo, J.A. Navio, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid, Journal of Photochemistry and Photobiology A, Chemistry 138 (2001) 79-85.
  • [108] M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes, Topics in Applied Physics 111 (2008) 13-62.
  • [109] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong, A review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44/9 (2006) 1624-1652.
  • [110] Y.Y. Huang, S.V. Ahir, E.M. Terentjev, Infrared actuation in aligned polymer-nanotube composites, Physical Review B 73 (2006) 125422.
  • [111]P.M. Ajayan, J.M. Tour, Materials science - nanotube composites, Nature 447 (2007) 1066-1068.
  • [112] L. Vaisman, G. Marom, H.D. Wagner, Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers, Advanced Functional Materials 16 (2006) 357-363.
  • [113] F.H. Gojny, J. Nastalczyk, Z. Roslaniec, K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chemical Physics Letters 370/5-6 (2003) 820-824.
  • [114] W. Zhou, J. Vavro, N.M. Nemes, J.E. Fischer, F. Borondics, K. Kamarás, D.B. Tanner, Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes, Physical Review B 71 (2005) 205423.
  • [115] F. Beuneu, C.L. Huillier, J.P. Salvetat, J.M. Bonard, L. Forró, Modification of multiwall carbon nanotubes by electron irradiation, An ESR study, Physical Review B 59 (1999) 5945-5949.
  • [116] V. Zhirnov, D. Herr, M. Meyyappan, Electronic applications of carbon nanotubes become closer to reality, Journal of Nanoparticle Research 1 (1999) 151-152.
  • [117] A.S. Kotosonov, Texture and magnetic anisotropy of carbon nanotubes in cathode deposits obtained by the electric-arc method, JETP Letters 7 (1999) 476-480.
  • [118]A.S. Claye, N.M. Nemes, A. Jánossy, J.E. Fischer, Structure and electronic properties of potassium-doped single-wall carbon nanotubes, Physical Review B 62 (2000) R4845-R4848.
  • [119] J.P. Salvetat, T. Fehér, C. L’Huillier, F. Beuneu, L. Forró, Anomalous electron spin resonance behavior of single-walled carbon nanotubes, Physical Review B 72 (2005) 075440.
  • [120] P. Stamenov, J.M.D. Coey, Magnetic susceptibility of carbon-experiment and theory, Journal of Magnetism and Magnetic Materials 290-291 (2005) 279-285.
  • [121] S. Numao, S. Bandow, S. Iijima, Variable-range hopping conduction in the assembly of boron-doped multiwalled carbon nanotubes, The Journal of Physical Chemistry C 111/32 (2007) 11763-11766.
  • [122] M. Galambos, G. Fabia, F. Simon, L. Ciric, L. Forró, L. Korecz, A. Rockenbauer, J. Koltai, V. Zólyomi, A. Rusznyak, J. Kurti, N. M. Nemes, B. Dóra, H. Peterlik, R. Pfeiffer, H. Kuzmany, T. Pichler, Identifying the electron spin resonance of conduction electrons in alkali doped SWCNTs, Physica Status Solidi B 246 (2009) 2760-2763.
  • [123] W. Schiessl, W. Potzel, H. Karze, M. Steiner, G.M. Kalvius, A. Martin, M.K. Krause, I. Halevy, J. Gal, W. Schafer, G. Will, M. Hillberg, R. Wappling, Magnetic properties of the ZnFe2O4 spinel, Physical Review B 53 (1996) 9143-9152.
  • [124] V. Sepelak, K. Tkacova, V.V. Boldyrev, S. Wissmann, K.D. Becker, Mechanically induced cation redistribution in ZnFe2O4 and its thermal stability, Physica B, Condensed Matter 234-236 (1997) 617-619.
  • [125] T.M. Clark, B.J. Evans, Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4, A conversion electron Mossbauer spectroscopic investigation, IEEE Transactions on Magnetics 33 (1997) 3745-3747.
  • [126] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, Journal of Physics, Condensed Matter 12 (2000) 7795-7805.
  • [127] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R. Joseyphus, Justin, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, J. M. Greneche, Ferrimagnetic ordering in nanostructured CdFe2O4 spinel, Journal of Applied Physics 90 (2001) 527-529.
  • [128] Y. Yamada, K. Kamazawa, Y. Tsunoda, Interspin interactions in ZnFe2O4: Theoretical analysis of neutron scattering study, Physical Review B 66 (2002) 064401-1-7.
  • [129] K. Kamazawa, Y. Tsunoda, H. Kadowaki, K. Kohn, Magnetic neutron scattering measurements on a single crystal of frustrated ZnFe2O4, Physical Review B 68 (2003) 024412-1-9.
  • [130] J.H. Shim, S. Lee, J.H. Park, S.-J. Han, Y.H. Jeong, Y.W. Cho, Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR, Physical Review B 73 (2006) 064404-1-4.
  • [131] C. Cheng, Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures, Physical Review B 78 (2008) 075406-1-9.
  • [132] Y. Koseoglu, H. Yildiz, R. Yilgin, Synthesis, characterization and superparamagnetic resonance studies of ZnFe2O4 nanoparticles, Journal of Nanoscience and Nanotechnology 12 (2012) 2261-9.
  • [133] M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route, Journal of Magnetism and Magnetic Materials 322/7 (2010) 866-871.
  • [134] M. Mozaffari, M. Eghbali Arani, J. Amighian, Preparation and investigation of magnetic properties of MnNiTi-substituted strontium hexaferrite nanoparticles, Journal of Magnetism and Magnetic Materials 322/18 (2010) 2670-2674.
  • [135] Z. Roslaniec, G. Broza, K. Schulte, Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT), Composite Interfaces 10 (2003) 95-102.
  • [136] M. Kurzawa, A. Blonska-Tabero, I. Rychlowska-Himmel, P. Tabero, Reactivity of FeVO4 towards oxides and pyrovanadates(V) of Co and Ni, Materials Research Bulletin 36 (2001) 1379-1390.
  • [137] M. Kurzawa, A. Blonska-Tabero, The synthesis and selected properties of new compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6), Materials Research Bulletin 36/7 (2002) 849.
  • [138] A. Biedunkiewicz, Crystallization of TiC and TiN from a colloidal system, Materials Science 21/4 (2003) 445-452.
  • [139] A. Biedunkiewicz, A. Strzelczak, G. Mozdzen, J. Lelatko, Non-isothermal oxidation of ceramic nanocomposites using the example of Ti-Si-C-N powder: Kinetic analysis method, Acta Materialia 56 (2008) 3132-3145.
  • [140] A.B. Bourlinos, E.P. Giannelis, Y. Sanakis, A. Bakandritsos, M. Karakassides, M. Gjoka, P. Petridis, A graphite oxide-like carbogenic material derived from a molecular precursor, Carbon 44 (2006) 1906-1912.
  • [141] M. Romcevic, R. Kostic, M. Romcevic, B. Hadzic, I. Kuryliszyn-Kudelska, W. Dobrowolski, U. Narkiewicz, D. Sibera, Raman scattering from ZnO(Fe) nanoparticles, Acta Physica Polonica A 114/5 (2008) 1323-1328.
  • [142] N. Guskos, J. Typek, M. Maryniak, Z. Roslaniec, D. Petridis, M. Kwiatkowska, FMR study of y-Fe2O3 magnetic nanoparticles in a multiblock poly(ether-ester) copolymer matrix, Materials Science-Poland 23/4 (2005) 971-976.
  • [143] N. Guskos, M. Wabia, M. Kurzawa, A. Bezkrovnyj, J. Typek, I. Rychlowska-Himmel, A. Blonska-Tabero, Neutron diffraction study of Mg2FeV3O11-δ compounds, Radiation Effects in Solids 158 (2003) 369-374.
  • [144] N. Guskos, J. Typek, A. Bezkrovnyj, V. Likodimos, M. Wabia, M. Kurzawa, E.A. Anagnostakis, G. Gasiorek, Neutron studies of cation disorder in Zn2FeV3O11-δ, Journal of Alloys and Compounds 377/1-2 (2004) 47-52.
  • [145] N. Guskos, A. Bezkrovnjj, J. Typek, N.Yu. Ryabova, A. Blonska-Tabero, M. Kurzawa, M. Maryniak, Neutron study of Zn3Fe4V6O24, Journal of Alloys and Compounds 391 (2005) 20.
  • [146] A. Bezkrovnyi, N. Guskos, J. Typek, N. Yu. Ryabova, M. Bosacka, A. Blonska-Tabero, M. Kurzawa, I. Rychlowska-Himmel, G. Zolnierkiewicz, Neutron diffraction study of Mn3Fe4V6O24, Materials Science-Poland 23/4 (2005) 883-890.
  • [147]A. Beskrovnyy, N. Guskos, J. Typek, N. Yu. Ryabova, A. Blonska-Tabero, M. Kurzawa, G. Zolnierkiewicz, Crystal structure of Mg3Fe4V6O24 studies by neutron diffraction, Reviews on Advanced Materials Science 11 (2006) 166.
  • [148] C.P. Poole, Electron spin resonance, Wiley- Interscience, New York, 1983.
  • [149] D.L. Huber, Critical-point anomalies in the electron-paramagnetic-resonance linewidth and in the zero-field relaxation time of antiferromagnets, Physical Review B 6 (1972) 3180-3186.
  • [150] C. Oliva, L. Formi, A.V. Vishniakov, Spin glass formation in La0.9Sr0.1CoO3 catalyst for flameless combustion of methane, Spectrochimica acta A, Molecular and biomolecular spectroscopy 56 (2000) 301-307.
  • [151] N. Guskos, J. Typek, G. Zolnierkiewicz, R. Szymczak, P. Berczynski, K. Wardal, A. Blonska-Tabero, Magnetic properties of a new iron lead vanadate Pb2FeV3On Journal of Alloys and Compounds 509 (2011) 8153-8157.
  • [152] N. Guskos, V. Likodimos, S. Glenis, J. Typek, J. Majszczyk, G. Zolnierkiewicz, A. Blonska-Tabero, C.L. Lin, Magnetic and dielectric study of Ni2FeV3O11-δ, Reviews on Advanced Materials Science 14 (2007) 14-34.
  • [153] L.V. Bershov, EPR spectra of 3dn ions in beryl crystals, Zhurnal Structurnoy Khimii 10 (1969) 141.
  • [154] M. Sterrer, E. Fischbach, T. Risse, H.-J. Freund, Geometric characterization of a singly charged oxygen vacancy on a single-crystalline Mg0(001) film by electron paramagnetic resonance spectroscopy, Physical Review Letters 94/18 (2005) 186101.
  • [155] S.V. Chong, K. Kadowaki, J. Xia, H. Idriss, Interesting magnetic behavior from reduced titanium dioxide nanobelts, Applied Physics Letters 92/23 (2008) 232502-232502-3.
  • [156] X. Wei, R. Skomski, B. Balamurugan, Z.G. Sun, S. Ducharme, D.J. Sellmyer, Magnetism of TiO and TiO2 nanoclusters, Journal of Applied Physics 105/7 (2009) 07C517-1-3.
  • [157] N. Guskos, V. Likodimos, S. Glenis, G. Zolnierkiewicz, J. Typek, C.L. Lin, A. Biedunkiewicz, Magnetic properties of TiCx/C nanocomposites, Journal of Non-crystalline Solids 354 (2008) 4330-4333.
  • [158] H.R. Zhang, H.W. Zheng, Y.Z. Gu. Y. Liang, Y.R. Cao, K.Q. Tan, TiC and TiN compounds, Proceedings of the 7th National Confrence on Functional Materials and Applications, China 1-3 (2010) 359.
  • [159] S. Yang, W. Tang, Y. Ishikawa, Q. Feng, Synthesis of titanium dioxide with oxygen vacancy and its visible-light sensitive photocatalytic activity, Materials Research Bulletin 46/4 (2011) 531-537.
  • [160] S. Numao, S. Bandow, S. Iijima, Control of the innermost tube diameters in multiwalled carbon nanotubes by the vaporization of boron-containing carbon rod in RF plasma, Journal of Physical Chemistry C 111 (2007) 4543-4548.
  • [161] J. Kliva, Electron Magnetic resonance of nanoparticles, Supermagnetic resonance in magnetic nanoparticles, S.P. Gubin (Ed.), Wiley-VCH, 2009, 255.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb768d0a-45b7-452e-9983-765bf9c77784
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.