PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Top-view people counting in public transportation using Kinect

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes a method for people counting in public transportation. In this particular scenario, various body poses corresponding to holding handrails must be accounted for. Kinect sensor mounted vertically has been employed to acquire a database of images of 1-5 persons, with and without body poses of holding a handrail. An algorithm has been devised for robust people counting, consisting of multiple steps. The handrails are removed by substituting an average image of the handrails from the image with persons holding a handrail. The image is then processed in blocks in order to find potential local maxima, which are subsequently verified to find head candidates. Finally, non-head objects are filtered out, based on the ratio of pixels with similar and near-zero value, in the neighbourhood of the maxima. The method has an average accuracy of 91% and has proved to handle well the handrails in the depth maps.
Rocznik
Strony
17--20
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunication, Department of Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Yoshinaga S., Shimada A., & Taniguchi R. I.: „Real-time people counting using blob descriptor.„ Procedia-Social and Behavioral Sciences, 2(1), pp. 143-152, 2010
  • 2. Patzold M., Evangelio R. H., & Sikora T.: „Counting people in crowded environments by fusion of shape and motion information.„ In Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on (pp. 157-164), Aug. 2010
  • 3. Bevilacqua A., Di Stefano L., & Azzari P. „People Tracking Using a Time-of-Flight Depth Sensor.” In AVSS (Vol. 6, p. 89), Nov. 2006
  • 4. Bondi E., Seidenari L., Bimbo A. D., Bagdanov A. D.: „Realtime people counting from depth imagery of crowded environments.” IEEE Computer Vision, 2003
  • 5. Zhang X., Yan J., Feng S., Lei Z., Yi D., & Li S. Z.: „Water filling: Unsupervised people counting via vertical kinect sensor.„In Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on (pp. 215-220). Sept. 2012
  • 6. Rauter M.: „Reliable human detection and tracking in top-view depth images.„ In Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on (pp. 529- 534), June 2013
  • 7. Dan B. K., Kim Y. S., Jung J. Y., & Ko S. J.: „Robust people counting system based on sensor fusion.„ Consumer Electronics, IEEE Transactions on, 58(3), pp. 1013-1021, 2012
  • 8. Wateosot C., & Suvonvorn N.: „Top-view Based People Counting Using Mixture of Depth and Color Information.„ The Second Asian Conference on Information Systems, ACIS 2013, October 31 – November 2 , 2013, Phuket, Thailand
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb74656d-8bda-48e7-b609-870f2d834a5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.